Aleksander Tworak, Roman Smidak, Carolline Rodrigues Menezes, Samuel W. Du, Susie Suh, Elliot H. Choi, Sanae S. Imanishi, Zhiqian Dong, Dominik Lewandowski, Kristen E. Fong, Gabriela Grigorean, Antonio F. M. Pinto, Qianlan Xu, Dorota Skowronska-Krawczyk, Seth Blackshaw, Yoshikazu Imanishi, Krzysztof Palczewski
{"title":"MFRP is a molecular hub that organizes the apical membrane of RPE cells by engaging in interactions with specific proteins and lipids","authors":"Aleksander Tworak, Roman Smidak, Carolline Rodrigues Menezes, Samuel W. Du, Susie Suh, Elliot H. Choi, Sanae S. Imanishi, Zhiqian Dong, Dominik Lewandowski, Kristen E. Fong, Gabriela Grigorean, Antonio F. M. Pinto, Qianlan Xu, Dorota Skowronska-Krawczyk, Seth Blackshaw, Yoshikazu Imanishi, Krzysztof Palczewski","doi":"10.1073/pnas.2425523122","DOIUrl":null,"url":null,"abstract":"Membrane frizzled-related protein (MFRP), present in the retinal pigment epithelium (RPE), is an integral membrane protein essential for ocular development and the normal physiology of the retina. Mutations in MFRP are associated with autosomal recessive nonsyndromic nanophthalmos, leading to severe hyperopia and early-onset retinitis pigmentosa. While several preclinical gene-augmentation and gene-editing trials hold promise for future therapies aimed at stopping degeneration and restoring retinal function, the molecular mechanisms involved in MFRP biology are still not well understood. Here, we studied the biochemical properties of MFRP and the molecular consequences of its loss of function in the retinal degeneration 6 (rd6) mouse model. Using transcriptomic and lipidomic approaches, we observed that accumulation of docosahexaenoic acid (DHA) constitutes a primary defect in the MFRP-deficient RPE. In biochemical assays, we showed that MFRP undergoes extensive glycosylation, and it preferentially binds lipids of several classes, including phosphatidylserine and phosphatidylinositol-4-phosphate; as well as binding to several transmembrane proteins, notably adiponectin receptor 1 (ADIPOR1) and inward rectifier potassium channel 13 (KCNJ13). Moreover, MFRP determines the subcellular localization of ADIPOR1 and KCNJ13 in the RPE in vivo. This feature is altered by MFRP deficiency and can be restored by gene-therapy approaches. Overall, our observations suggest that MFRP constitutes an important interaction hub within the apical membrane of RPE cells, coordinating protein trafficking and subcellular localization within the RPE, and lipid homeostasis within the entire retina.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"32 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2425523122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Membrane frizzled-related protein (MFRP), present in the retinal pigment epithelium (RPE), is an integral membrane protein essential for ocular development and the normal physiology of the retina. Mutations in MFRP are associated with autosomal recessive nonsyndromic nanophthalmos, leading to severe hyperopia and early-onset retinitis pigmentosa. While several preclinical gene-augmentation and gene-editing trials hold promise for future therapies aimed at stopping degeneration and restoring retinal function, the molecular mechanisms involved in MFRP biology are still not well understood. Here, we studied the biochemical properties of MFRP and the molecular consequences of its loss of function in the retinal degeneration 6 (rd6) mouse model. Using transcriptomic and lipidomic approaches, we observed that accumulation of docosahexaenoic acid (DHA) constitutes a primary defect in the MFRP-deficient RPE. In biochemical assays, we showed that MFRP undergoes extensive glycosylation, and it preferentially binds lipids of several classes, including phosphatidylserine and phosphatidylinositol-4-phosphate; as well as binding to several transmembrane proteins, notably adiponectin receptor 1 (ADIPOR1) and inward rectifier potassium channel 13 (KCNJ13). Moreover, MFRP determines the subcellular localization of ADIPOR1 and KCNJ13 in the RPE in vivo. This feature is altered by MFRP deficiency and can be restored by gene-therapy approaches. Overall, our observations suggest that MFRP constitutes an important interaction hub within the apical membrane of RPE cells, coordinating protein trafficking and subcellular localization within the RPE, and lipid homeostasis within the entire retina.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.