Mammographic classification of interval breast cancers and artificial intelligence performance.

Tiffany T Yu,Anne C Hoyt,Melissa M Joines,Cheryce P Fischer,Nazanin Yaghmai,James S Chalfant,Lucy Chow,Shabnam Mortazavi,Christopher D Sears,James Sayre,Joann G Elmore,William Hsu,Hannah S Milch
{"title":"Mammographic classification of interval breast cancers and artificial intelligence performance.","authors":"Tiffany T Yu,Anne C Hoyt,Melissa M Joines,Cheryce P Fischer,Nazanin Yaghmai,James S Chalfant,Lucy Chow,Shabnam Mortazavi,Christopher D Sears,James Sayre,Joann G Elmore,William Hsu,Hannah S Milch","doi":"10.1093/jnci/djaf103","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nEuropean studies suggest artificial intelligence (AI) can reduce interval breast cancers (IBCs). However, research on IBC classification and AI's effectiveness in the U.S., particularly using digital breast tomosynthesis (DBT) and annual screening, is limited. We aimed to mammographically classify IBCs and assess AI performance using a 12-month screening interval.\r\n\r\nMETHODS\r\nFrom digital mammography (DM) and DBT screening mammograms acquired 2010-2019 at a U.S. tertiary care academic center, we identified IBCs diagnosed <12 months after a negative mammogram. At least three breast radiologists retrospectively classified IBCs as missed-reading error, minimal signs-actionable, minimal signs-non-actionable, true interval, occult, or missed-technical error. A deep-learning AI tool assigned risk scores (1-10) to the negative index screening mammograms, with scores ≥8 considered \"flagged.\" Statistical analysis evaluated associations among IBC types and AI exam scores, AI markings, and patient/tumor characteristics.\r\n\r\nRESULTS\r\nFrom 184,935 screening mammograms (65% DM, 35% DBT), we identified 148 IBCs in 148 women (mean age, 61±12 years). Of these, 26% were minimal signs-actionable; 24% occult; 22% minimal signs-non-actionable; 17% missed-reading error; 6% true interval; and 5% missed-technical error (p<.001). AI scored 131 mammograms (17 errors excluded). AI most frequently flagged exams with missed-reading errors (90%), minimal signs-actionable (89%) and minimal signs-non-actionable (72%) (p=.02). AI localized mammographically-visible types more accurately (35-68%) than non-visible types (0-50%, p=.02).\r\n\r\nCONCLUSION\r\nAI more frequently flagged and accurately localized IBC types that were mammographically visible at screening (missed or minimal signs), as compared to true interval or occult cancers.","PeriodicalId":501635,"journal":{"name":"Journal of the National Cancer Institute","volume":"108 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the National Cancer Institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jnci/djaf103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

BACKGROUND European studies suggest artificial intelligence (AI) can reduce interval breast cancers (IBCs). However, research on IBC classification and AI's effectiveness in the U.S., particularly using digital breast tomosynthesis (DBT) and annual screening, is limited. We aimed to mammographically classify IBCs and assess AI performance using a 12-month screening interval. METHODS From digital mammography (DM) and DBT screening mammograms acquired 2010-2019 at a U.S. tertiary care academic center, we identified IBCs diagnosed <12 months after a negative mammogram. At least three breast radiologists retrospectively classified IBCs as missed-reading error, minimal signs-actionable, minimal signs-non-actionable, true interval, occult, or missed-technical error. A deep-learning AI tool assigned risk scores (1-10) to the negative index screening mammograms, with scores ≥8 considered "flagged." Statistical analysis evaluated associations among IBC types and AI exam scores, AI markings, and patient/tumor characteristics. RESULTS From 184,935 screening mammograms (65% DM, 35% DBT), we identified 148 IBCs in 148 women (mean age, 61±12 years). Of these, 26% were minimal signs-actionable; 24% occult; 22% minimal signs-non-actionable; 17% missed-reading error; 6% true interval; and 5% missed-technical error (p<.001). AI scored 131 mammograms (17 errors excluded). AI most frequently flagged exams with missed-reading errors (90%), minimal signs-actionable (89%) and minimal signs-non-actionable (72%) (p=.02). AI localized mammographically-visible types more accurately (35-68%) than non-visible types (0-50%, p=.02). CONCLUSION AI more frequently flagged and accurately localized IBC types that were mammographically visible at screening (missed or minimal signs), as compared to true interval or occult cancers.
间隔期乳腺癌的乳房x线摄影分类与人工智能表现。
欧洲研究表明,人工智能(AI)可以减少间隔期乳腺癌(IBCs)。然而,在美国,关于IBC分类和人工智能有效性的研究,特别是使用数字乳腺断层合成(DBT)和年度筛查,是有限的。我们的目的是用乳房x线摄影对IBCs进行分类,并使用12个月的筛查间隔评估AI的表现。方法:从2010-2019年在美国三级医疗学术中心获得的数字乳房x光检查(DM)和DBT筛查乳房x光检查中,我们确定了在乳房x光检查阴性后<12个月诊断的IBCs。至少三名乳腺放射科医生回顾性地将IBCs分为漏读错误、最小体征可操作、最小体征不可操作、真实间隔、隐匿性或漏读技术错误。深度学习人工智能工具为阴性指数筛查乳房x线照片分配风险分数(1-10),分数≥8被视为“标记”。统计分析评估了IBC类型与AI考试分数、AI标记和患者/肿瘤特征之间的关系。结果从184,935张筛查乳房x光片(65% DM, 35% DBT)中,我们在148名女性(平均年龄61±12岁)中发现了148例IBCs。其中,26%是可操作的最小信号;神秘的24%;22%最小标志-不可诉;漏读误差17%;6%真间距;漏报技术错误5% (p< 0.001)。人工智能评分131张乳房x光片(排除17个错误)。人工智能最常标记的是漏读错误(90%),最小标志可操作(89%)和最小标志不可操作(72%)(p= 0.02)。人工智能定位乳腺x线可见型的准确率(35-68%)高于不可见型(0-50%,p= 0.02)。结论:与真正的间隔期或隐匿性癌症相比,在筛查时乳房x线摄影上可见的IBC类型(遗漏或最小体征)更频繁地被标记和准确定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信