Disruption of Ataxia-telangiectasia mutated kinase enhances radiation therapy efficacy in spatially-directed diffuse midline glioma models.

Avani Mangoli,Vennesa Valentine,Spencer Maingi,Sophie R Wu,Harrison Q Liu,Michael Aksu,Vaibhav Jain,Bronwen E Foreman,Joshua A Regal,Loren B Weidenhammer,Connor E Stewart,Maria E Guerra Garcia,Emily Hocke,Karen Abramson,Tal Michaeli,Nerissa T Williams,Lixia Luo,Megan Romero,Katherine Deland,Samantha Gadd,Eita Uchida,Laura Attardi,Kouki Abe,Rintaro Hashizume,David M Ashley,Oren J Becher,David G Kirsch,Simon G Gregory,Zachary J Reitman
{"title":"Disruption of Ataxia-telangiectasia mutated kinase enhances radiation therapy efficacy in spatially-directed diffuse midline glioma models.","authors":"Avani Mangoli,Vennesa Valentine,Spencer Maingi,Sophie R Wu,Harrison Q Liu,Michael Aksu,Vaibhav Jain,Bronwen E Foreman,Joshua A Regal,Loren B Weidenhammer,Connor E Stewart,Maria E Guerra Garcia,Emily Hocke,Karen Abramson,Tal Michaeli,Nerissa T Williams,Lixia Luo,Megan Romero,Katherine Deland,Samantha Gadd,Eita Uchida,Laura Attardi,Kouki Abe,Rintaro Hashizume,David M Ashley,Oren J Becher,David G Kirsch,Simon G Gregory,Zachary J Reitman","doi":"10.1172/jci179395","DOIUrl":null,"url":null,"abstract":"Diffuse midline gliomas (DMGs) are lethal brain tumors characterized by p53-inactivating mutations and oncohistone H3.3K27M mutations that rewire the cellular response to genotoxic stress. We used RCAS/tv-a retroviruses and Cre recombinase to inactivate p53 and induce native H3.3K27M mutations in a lineage- and spatially-directed manner. We generated primary mouse tumors that recapitulate human DMG. Disrupting ataxia-telangiectasia mutated kinase (ATM) enhanced the efficacy of radiation therapy in murine and patient-derived DMG models which increased survival. Microscopy-based in situ sequencing was used to spatially resolve transcriptional profiles in >750,000 single cells with or without ATM disruption and radiation therapy, revealing altered immune-neoplastic and endothelial cell interactions after treatment. An allelic series of primary murine DMG models with different p53 mutations confirmed that transactivation-independent p53 activity is a key mediator of radiosensitivity after ATM disruption. Our findings contribute primary DMG mouse models with deep profiling and reveal the mechanisms of treatment response to an actionable therapeutic strategy.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"137 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci179395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diffuse midline gliomas (DMGs) are lethal brain tumors characterized by p53-inactivating mutations and oncohistone H3.3K27M mutations that rewire the cellular response to genotoxic stress. We used RCAS/tv-a retroviruses and Cre recombinase to inactivate p53 and induce native H3.3K27M mutations in a lineage- and spatially-directed manner. We generated primary mouse tumors that recapitulate human DMG. Disrupting ataxia-telangiectasia mutated kinase (ATM) enhanced the efficacy of radiation therapy in murine and patient-derived DMG models which increased survival. Microscopy-based in situ sequencing was used to spatially resolve transcriptional profiles in >750,000 single cells with or without ATM disruption and radiation therapy, revealing altered immune-neoplastic and endothelial cell interactions after treatment. An allelic series of primary murine DMG models with different p53 mutations confirmed that transactivation-independent p53 activity is a key mediator of radiosensitivity after ATM disruption. Our findings contribute primary DMG mouse models with deep profiling and reveal the mechanisms of treatment response to an actionable therapeutic strategy.
破坏共济失调-毛细血管扩张突变激酶可增强放射治疗在空间定向弥漫性中线胶质瘤模型中的疗效。
弥漫性中线胶质瘤(dmg)是一种致命的脑肿瘤,其特征是p53失活突变和组蛋白H3.3K27M突变,这些突变可以重新连接细胞对基因毒性应激的反应。我们使用RCAS/tv-a逆转录病毒和Cre重组酶灭活p53,并以谱系和空间定向的方式诱导天然H3.3K27M突变。我们产生了再现人类DMG的小鼠原发肿瘤。破坏失调性毛细血管扩张突变激酶(ATM)可提高小鼠和患者源性DMG模型放射治疗的疗效,从而提高生存率。基于显微镜的原位测序用于空间解析bbb750,000个单细胞的转录谱,无论是否有ATM中断和放射治疗,揭示治疗后免疫-肿瘤和内皮细胞相互作用的改变。一系列具有不同p53突变的原发性小鼠DMG模型的等位基因证实,不依赖于交易激活的p53活性是ATM中断后放射敏感性的关键介质。我们的研究结果为DMG小鼠模型提供了深入分析,并揭示了对可行治疗策略的治疗反应机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信