{"title":"Fumarate integrates metabolism and immunity in diseases.","authors":"Jie Cheng,Yifeng Xiao,Peng Jiang","doi":"10.1016/j.tem.2025.03.008","DOIUrl":null,"url":null,"abstract":"Fumarate is a key metabolite produced primarily by the tricarboxylic acid (TCA) and urea cycles. In addition to having a metabolic role, its electrophilicity enables it to covalently modify cysteines; moreover, because of its α-ketoglutarate (α-KG)-like structure, it can also act as a competitive inhibitor of α-KG-dependent dioxygenases for epigenetic remodeling. Recent advances have broadened the role of fumarate as a bridge between metabolism and both innate and adaptive immunity, suggesting potentially important functions in anticancer immunity and autoimmune diseases. Here we review the connections between fumarate metabolism and immunity; we describe the mechanisms of fumarate regulation in cancer, autoimmunity, and other diseases; and we explore the clinical implications of fumarate and its esters for immunotherapy.","PeriodicalId":23301,"journal":{"name":"Trends in Endocrinology & Metabolism","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Endocrinology & Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.tem.2025.03.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fumarate is a key metabolite produced primarily by the tricarboxylic acid (TCA) and urea cycles. In addition to having a metabolic role, its electrophilicity enables it to covalently modify cysteines; moreover, because of its α-ketoglutarate (α-KG)-like structure, it can also act as a competitive inhibitor of α-KG-dependent dioxygenases for epigenetic remodeling. Recent advances have broadened the role of fumarate as a bridge between metabolism and both innate and adaptive immunity, suggesting potentially important functions in anticancer immunity and autoimmune diseases. Here we review the connections between fumarate metabolism and immunity; we describe the mechanisms of fumarate regulation in cancer, autoimmunity, and other diseases; and we explore the clinical implications of fumarate and its esters for immunotherapy.