Hybrid LPF-LSTM Model for Enhanced Epileptic Seizure Detection in EEG Signals

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Vaddi Venkata Narayana;Prakash Kodali
{"title":"Hybrid LPF-LSTM Model for Enhanced Epileptic Seizure Detection in EEG Signals","authors":"Vaddi Venkata Narayana;Prakash Kodali","doi":"10.1109/LSENS.2025.3558422","DOIUrl":null,"url":null,"abstract":"Accurate prediction and detection of epileptic seizures using electroencephalogram (EEG) signals are crucial for advancing clinical diagnostics and improving patient outcomes. This letter proposes a distinctive hybrid framework that combines a linear prediction filter with a long short-term memory network, designed to address challenges in noise reduction and temporal pattern recognition in EEG signals. The detection performance, particularly specificity, is enhanced by applying dynamic thresholding based on residual energy analysis. The proposed method, with key aspects of the validation framework, enhances cross-patient generalization by validating the model on the CHB-MIT Scalp EEG Database across four distinct age groups: infants, children, adolescents, and young adults. The hybrid approach achieved 98.4% accuracy, 97.8% sensitivity, 96.2% specificity, and 0.98 area under the curve, outperforming traditional approaches by 3%–5%.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 5","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10950129/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction and detection of epileptic seizures using electroencephalogram (EEG) signals are crucial for advancing clinical diagnostics and improving patient outcomes. This letter proposes a distinctive hybrid framework that combines a linear prediction filter with a long short-term memory network, designed to address challenges in noise reduction and temporal pattern recognition in EEG signals. The detection performance, particularly specificity, is enhanced by applying dynamic thresholding based on residual energy analysis. The proposed method, with key aspects of the validation framework, enhances cross-patient generalization by validating the model on the CHB-MIT Scalp EEG Database across four distinct age groups: infants, children, adolescents, and young adults. The hybrid approach achieved 98.4% accuracy, 97.8% sensitivity, 96.2% specificity, and 0.98 area under the curve, outperforming traditional approaches by 3%–5%.
基于LPF-LSTM混合模型的脑电信号癫痫发作增强检测
利用脑电图(EEG)信号准确预测和检测癫痫发作对于推进临床诊断和改善患者预后至关重要。这封信提出了一个独特的混合框架,将线性预测滤波器与长短期记忆网络相结合,旨在解决脑电图信号中的降噪和时间模式识别方面的挑战。采用基于剩余能量分析的动态阈值法提高了检测性能,特别是特异性。所提出的方法具有验证框架的关键方面,通过在CHB-MIT头皮脑电图数据库上验证四个不同年龄组(婴儿、儿童、青少年和年轻人)的模型,增强了跨患者的泛化。该方法准确率为98.4%,灵敏度为97.8%,特异度为96.2%,曲线下面积为0.98,优于传统方法3% ~ 5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信