{"title":"Exploiting Intel AMX Power Gating","authors":"Joshua Kalyanapu;Farshad Dizani;Azam Ghanbari;Darsh Asher;Samira Mirbagher Ajorpaz","doi":"10.1109/LCA.2025.3555183","DOIUrl":null,"url":null,"abstract":"We identify a novel vulnerability in Intel AMX’s dynamic power performance scaling, enabling <sc>NetLoki</small>, a stealthy and high-performance remote speculative attack that bypasses traditional cache defenses and leaks arbitrary addresses over a realistic network where other attacks fail. <sc>NetLoki</small> shows a 34,900% improvement in leakage rate over NetSpectre. We show that <sc>NetLoki</small> evades detection by three state-of-the-art microarchitectural attack detectors (EVAX, PerSpectron, RHMD) and requires a 20,000x reduction in the system’s timer resolution (10 us) than the standard 0.5 ns hardware timer to be mitigated via timer coarsening. Finally, we analyze the root cause of the leakage and propose an effective defense. We show that the mitigation increases CPU power consumption by<monospace> 12.33%.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 1","pages":"113-116"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10938848/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
We identify a novel vulnerability in Intel AMX’s dynamic power performance scaling, enabling NetLoki, a stealthy and high-performance remote speculative attack that bypasses traditional cache defenses and leaks arbitrary addresses over a realistic network where other attacks fail. NetLoki shows a 34,900% improvement in leakage rate over NetSpectre. We show that NetLoki evades detection by three state-of-the-art microarchitectural attack detectors (EVAX, PerSpectron, RHMD) and requires a 20,000x reduction in the system’s timer resolution (10 us) than the standard 0.5 ns hardware timer to be mitigated via timer coarsening. Finally, we analyze the root cause of the leakage and propose an effective defense. We show that the mitigation increases CPU power consumption by 12.33%.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.