Comparative analysis of 3D printed and cast conductive rubber for enhanced tactile sensing applications

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jirapat Puangkunya , Sasitorn Srisawadi , Teeranoot Chanthasopeephan
{"title":"Comparative analysis of 3D printed and cast conductive rubber for enhanced tactile sensing applications","authors":"Jirapat Puangkunya ,&nbsp;Sasitorn Srisawadi ,&nbsp;Teeranoot Chanthasopeephan","doi":"10.1016/j.sna.2025.116585","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the development of conductive natural rubber for use in tactile sensors, with a particular focus on comparing two fabrication techniques: 3D-printed conductive rubber and cast conductive rubber. The 3D-printed conductive rubber is made using natural rubber mixed with carbon black as the conductive agent. This additive manufacturing process constructs the material layer by layer, ensuring a more uniform distribution of carbon black throughout the structure. In contrast, the casting technique, which is a conventional method, involves allowing the conductive rubber mixture to cure over time. During this process, carbon black particles often settle at the bottom of the mold, resulting in a non-uniform distribution of the conductive agent. These differences in fabrication methods significantly affect the properties and performance of the tactile sensors produced. By analyzing the outcomes of both techniques, this study aims to provide valuable insights for optimizing fabrication processes, ultimately enhancing sensor functionality and reliability for future applications.</div></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"390 ","pages":"Article 116585"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424725003917","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the development of conductive natural rubber for use in tactile sensors, with a particular focus on comparing two fabrication techniques: 3D-printed conductive rubber and cast conductive rubber. The 3D-printed conductive rubber is made using natural rubber mixed with carbon black as the conductive agent. This additive manufacturing process constructs the material layer by layer, ensuring a more uniform distribution of carbon black throughout the structure. In contrast, the casting technique, which is a conventional method, involves allowing the conductive rubber mixture to cure over time. During this process, carbon black particles often settle at the bottom of the mold, resulting in a non-uniform distribution of the conductive agent. These differences in fabrication methods significantly affect the properties and performance of the tactile sensors produced. By analyzing the outcomes of both techniques, this study aims to provide valuable insights for optimizing fabrication processes, ultimately enhancing sensor functionality and reliability for future applications.
3D打印和铸造导电橡胶增强触觉传感应用的对比分析
本研究探讨了用于触觉传感器的导电天然橡胶的发展,特别侧重于比较两种制造技术:3d打印导电橡胶和铸造导电橡胶。3d打印导电橡胶采用天然橡胶与炭黑混合作为导电剂制成。这种增材制造工艺一层一层地构建材料,确保炭黑在整个结构中更均匀地分布。相比之下,铸造技术是一种传统的方法,需要让导电橡胶混合物随着时间的推移而固化。在此过程中,炭黑颗粒经常沉降在模具底部,导致导电剂分布不均匀。这些制造方法的差异极大地影响了所生产的触觉传感器的性能。通过分析这两种技术的结果,本研究旨在为优化制造工艺提供有价值的见解,最终增强传感器的功能和可靠性,以供未来应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors and Actuators A-physical
Sensors and Actuators A-physical 工程技术-工程:电子与电气
CiteScore
8.10
自引率
6.50%
发文量
630
审稿时长
49 days
期刊介绍: Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas: • Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results. • Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon. • Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays. • Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers. Etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信