Integrating DL-based surrogate within an Interacting Particle Ensemble Kalman Filtering framework for computationally efficient condition monitoring of FOWT moorings

IF 4.6 2区 工程技术 Q1 ENGINEERING, CIVIL
Ananay Thakur , Rohit Kumar , O.A. Shereena , Smriti Sharma , Dongsheng Li , Subhamoy Sen
{"title":"Integrating DL-based surrogate within an Interacting Particle Ensemble Kalman Filtering framework for computationally efficient condition monitoring of FOWT moorings","authors":"Ananay Thakur ,&nbsp;Rohit Kumar ,&nbsp;O.A. Shereena ,&nbsp;Smriti Sharma ,&nbsp;Dongsheng Li ,&nbsp;Subhamoy Sen","doi":"10.1016/j.oceaneng.2025.121223","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional model-driven strategies for monitoring the condition of moorings in Floating Offshore Wind Turbines (FOWTs) depend on resource-intensive simulations of intricate high-fidelity models. Conversely, data-driven methods offer unbiased and prompt results but necessitate comprehensive labeled datasets that cover various damage scenarios, which are limited for FOWTs. Furthermore, the significant uncertainties associated with FOWTs’ operational environments complicate matters, making probabilistic estimation essential. To tackle this, filtering-based probabilistic methods are pertinent, although they typically require repetitive simulations of high-fidelity models.</div><div>An innovative solution involves replacing the high-fidelity model with a Deep Learning (DL)-based surrogate acting as a “data-based predictor” (DBP) to simulate FOWT dynamics. Utilizing a Fully Connected Neural Network (FCNN) architecture, the DBP is trained on synthetic time series data from a calibrated OpenFAST model, enabling it to learn FOWT dynamics and make one-step-ahead predictions based on current responses and health states, thus facilitating real-time monitoring. This surrogate model is integrated into a stochastic inverse estimation framework using the Interacting Particle Ensemble Kalman Filter (IPEnKF) to assess mooring health. Comprehensive tests on the NREL 5-MW wind turbine model mounted on an OC4 semi-submersible platform under varying noise levels, damage, and sea conditions demonstrate the method’s accuracy, precision, detection promptness, and reliability.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"330 ","pages":"Article 121223"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825009369","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional model-driven strategies for monitoring the condition of moorings in Floating Offshore Wind Turbines (FOWTs) depend on resource-intensive simulations of intricate high-fidelity models. Conversely, data-driven methods offer unbiased and prompt results but necessitate comprehensive labeled datasets that cover various damage scenarios, which are limited for FOWTs. Furthermore, the significant uncertainties associated with FOWTs’ operational environments complicate matters, making probabilistic estimation essential. To tackle this, filtering-based probabilistic methods are pertinent, although they typically require repetitive simulations of high-fidelity models.
An innovative solution involves replacing the high-fidelity model with a Deep Learning (DL)-based surrogate acting as a “data-based predictor” (DBP) to simulate FOWT dynamics. Utilizing a Fully Connected Neural Network (FCNN) architecture, the DBP is trained on synthetic time series data from a calibrated OpenFAST model, enabling it to learn FOWT dynamics and make one-step-ahead predictions based on current responses and health states, thus facilitating real-time monitoring. This surrogate model is integrated into a stochastic inverse estimation framework using the Interacting Particle Ensemble Kalman Filter (IPEnKF) to assess mooring health. Comprehensive tests on the NREL 5-MW wind turbine model mounted on an OC4 semi-submersible platform under varying noise levels, damage, and sea conditions demonstrate the method’s accuracy, precision, detection promptness, and reliability.
在交互粒子集合卡尔曼滤波框架内整合基于 DL 的代用参数,实现计算效率高的 FOWT 系泊设备状态监测
传统的模型驱动策略用于监测浮式海上风力发电机系泊状态,依赖于复杂的高保真模型的资源密集型模拟。相反,数据驱动的方法提供公正和及时的结果,但需要涵盖各种损坏场景的全面标记数据集,这对于fowt来说是有限的。此外,与fowt的操作环境相关的重大不确定性使问题复杂化,使得概率估计至关重要。为了解决这个问题,基于过滤的概率方法是相关的,尽管它们通常需要高保真模型的重复模拟。一种创新的解决方案是用基于深度学习(DL)的代理代替高保真模型,作为“基于数据的预测器”(DBP)来模拟FOWT动态。利用全连接神经网络(FCNN)架构,DBP根据来自校准的OpenFAST模型的合成时间序列数据进行训练,使其能够学习FOWT动态,并根据当前响应和健康状态提前一步预测,从而促进实时监测。该替代模型被集成到一个随机逆估计框架中,使用相互作用粒子系泊集合卡尔曼滤波器(IPEnKF)来评估系泊健康。对安装在OC4半潜式平台上的NREL 5-MW风力涡轮机模型进行了综合测试,在不同的噪声水平、损伤和海况下验证了该方法的准确性、精密度、检测及时性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信