H. Moreno , V.C. Teixeira , M.A. Ponce , C.E. Macchi , C.M. Aldao , V.D.N. Bezzon , A.Z. Simões , M.A. Ramirez
{"title":"Tuning dielectric and nonohmic properties of CaCu3Ti4O12 ceramics with W doping","authors":"H. Moreno , V.C. Teixeira , M.A. Ponce , C.E. Macchi , C.M. Aldao , V.D.N. Bezzon , A.Z. Simões , M.A. Ramirez","doi":"10.1016/j.materresbull.2025.113493","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the dielectric and nonohmic properties of the CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>: x % W (<em>x</em> = 0.00, 0.02, 0.010, 2.50, 5.00) denoted as CCTO, W002, W010, W250, and W500, respectively. X-ray diffraction analysis confirmed a pseudo-cubic perovskite phase (Im-3 space group) for samples, and a CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>/CaWO<sub>4</sub>/TiO<sub>2</sub> composite system for high W content (W250, W500), supported by energy dispersive spectroscopy (EDS) and X-ray fluorescence (XRF) measurements. Positron annihilation lifetime spectroscopy identified <span><math><mrow><msubsup><mi>V</mi><mrow><mi>C</mi><mi>u</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>/</mo><msubsup><mi>V</mi><mrow><mi>C</mi><mi>a</mi></mrow><mrow><mo>″</mo></mrow></msubsup></mrow></math></span> vacancies as the main defects induced by W incorporation, influencing charge carrier mobility at grain boundaries, thus affecting sintering, grain size, and morphology. Lower W content (W002) resulted in a high dielectric response (<em>ε</em>∼1.2 × 10<sup>4</sup>) with improved tan<em>δ</em> (0.02). Conversely, W250 exhibited higher nonlinear coefficient (α∼38), with low leakage current (<em>I<sub>L</sub></em>∼14.6 μA/cm<sup>2</sup>) and breakdown voltage (<em>Eb</em>∼198 V. cm<sup>−1</sup>). This solid-state synthesis method provides a way to customize TiO<sub>2</sub>/CaWO<sub>4</sub>-doped CCTO matrices, showcasing promising varistor characteristics that are well-suited for hybrid capacitor-varistor devices and related applications.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"190 ","pages":"Article 113493"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825002016","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the dielectric and nonohmic properties of the CaCu3Ti4O12: x % W (x = 0.00, 0.02, 0.010, 2.50, 5.00) denoted as CCTO, W002, W010, W250, and W500, respectively. X-ray diffraction analysis confirmed a pseudo-cubic perovskite phase (Im-3 space group) for samples, and a CaCu3Ti4O12/CaWO4/TiO2 composite system for high W content (W250, W500), supported by energy dispersive spectroscopy (EDS) and X-ray fluorescence (XRF) measurements. Positron annihilation lifetime spectroscopy identified vacancies as the main defects induced by W incorporation, influencing charge carrier mobility at grain boundaries, thus affecting sintering, grain size, and morphology. Lower W content (W002) resulted in a high dielectric response (ε∼1.2 × 104) with improved tanδ (0.02). Conversely, W250 exhibited higher nonlinear coefficient (α∼38), with low leakage current (IL∼14.6 μA/cm2) and breakdown voltage (Eb∼198 V. cm−1). This solid-state synthesis method provides a way to customize TiO2/CaWO4-doped CCTO matrices, showcasing promising varistor characteristics that are well-suited for hybrid capacitor-varistor devices and related applications.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.