Understanding the structure and mechanics of the sheep calcaneal enthesis: a relevant animal model to design scaffolds for tissue engineering applications
Alberto Sensini , Luca Raimondi , Albano Malerba , Carlos Peniche Silva , Andrea Zucchelli , Alexandra Tits , Davide Ruffoni , Stéphane Blouin , Markus A. Hartmann , Martijn van Griensven , Lorenzo Moroni
{"title":"Understanding the structure and mechanics of the sheep calcaneal enthesis: a relevant animal model to design scaffolds for tissue engineering applications","authors":"Alberto Sensini , Luca Raimondi , Albano Malerba , Carlos Peniche Silva , Andrea Zucchelli , Alexandra Tits , Davide Ruffoni , Stéphane Blouin , Markus A. Hartmann , Martijn van Griensven , Lorenzo Moroni","doi":"10.1016/j.bioadv.2025.214320","DOIUrl":null,"url":null,"abstract":"<div><div>Tendon or enthesis injuries are a worldwide clinical problem. Along the enthesis, collagen fibrils show a progressive loss of anisotropy and an increase in mineralization reaching the bone. This causes gradients of mechanical properties. The design of scaffolds to regenerate these load-bearing tissues requires validation <em>in vivo</em> in relevant large animal models. The sheep tendon of triceps surae muscle is an optimal animal model for this scope with limited knowledge about its structure and mechanics. We decided to investigate in-depth its structure and full-field mechanics. Collagen fibrils morphology was investigated via scanning electron microscopy revealing a marked change in orientation/dimensions passing from the tendon to the enthesis. Backscatter electron images and nanoindentation at the enthesis/bone marked small gradients of mineralization at the mineralized fibrocartilage reaching 27%wt and indentation modulus around 17–30 GPa. The trabecular bone instead had indentation modulus around 15–22 GPa. Mechanical tensile tests with digital image correlation confirmed the typical non-linear behavior of tendons (failure strain = 8.2 ± 1.0 %; failure force = 1369 ± 187 N) with maximum principal strains reaching mean values of ε<sub>p1</sub> ∼ 7 %. The typical auxetic behavior of tendon was highlighted by the minimum principal strains (ε<sub>p2</sub> ∼ 5 %), progressively dampened at the enthesis. Histology revealed that this behavior was caused by a local thickening of the epitenon. Cyclic tests showed a force loss of 21 ± 7 % at the last cycle. These findings will be fundamental for biofabrication and clinicians interested in designing the new generation of scaffolds for enthesis regeneration.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"175 ","pages":"Article 214320"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950825001475","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Tendon or enthesis injuries are a worldwide clinical problem. Along the enthesis, collagen fibrils show a progressive loss of anisotropy and an increase in mineralization reaching the bone. This causes gradients of mechanical properties. The design of scaffolds to regenerate these load-bearing tissues requires validation in vivo in relevant large animal models. The sheep tendon of triceps surae muscle is an optimal animal model for this scope with limited knowledge about its structure and mechanics. We decided to investigate in-depth its structure and full-field mechanics. Collagen fibrils morphology was investigated via scanning electron microscopy revealing a marked change in orientation/dimensions passing from the tendon to the enthesis. Backscatter electron images and nanoindentation at the enthesis/bone marked small gradients of mineralization at the mineralized fibrocartilage reaching 27%wt and indentation modulus around 17–30 GPa. The trabecular bone instead had indentation modulus around 15–22 GPa. Mechanical tensile tests with digital image correlation confirmed the typical non-linear behavior of tendons (failure strain = 8.2 ± 1.0 %; failure force = 1369 ± 187 N) with maximum principal strains reaching mean values of εp1 ∼ 7 %. The typical auxetic behavior of tendon was highlighted by the minimum principal strains (εp2 ∼ 5 %), progressively dampened at the enthesis. Histology revealed that this behavior was caused by a local thickening of the epitenon. Cyclic tests showed a force loss of 21 ± 7 % at the last cycle. These findings will be fundamental for biofabrication and clinicians interested in designing the new generation of scaffolds for enthesis regeneration.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!