{"title":"Advancing aerospace maintenance: Thermochromic liquid crystal coating method for skin-to-core disbond detection in CFRP honeycomb structures","authors":"M. Sun , D. Wowk , P.R. Underhill , T.W. Krause","doi":"10.1016/j.compositesb.2025.112516","DOIUrl":null,"url":null,"abstract":"<div><div>A novel Non-Destructive Evaluation (NDE) method for aerospace maintenance is introduced, utilizing advanced Thermochromic Liquid Crystal (TLC) ink to detect skin-to-core disbonds in carbon fiber-reinforced polymer (CFRP) honeycomb structures subjected to low-velocity impacts, representing a state-of-the-art integration of functional materials (TLC) with essential aerospace maintenance practices. Traditional NDE methods for detecting disbonds in aerospace structures often necessitate skilled technicians and sophisticated equipment. In contrast, the current study demonstrates that the proposed TLC coating method provides a straightforward, real-time detection technique that can serve as a preliminary or substitute inspection method. The detection and characterization results using the TLC coating method are rigorously evaluated through comparison with Forward-Looking Infrared (FLIR) by employing a high-performance thermal imaging camera. Results demonstrated that the TLC coating method achieved the same detection limits as FLIR thermography, with measurements of the disbond size differing by no more than 5 % between the two methods. A new heating method, Communicative Heating Thermography (CHT), was introduced for use with the TLC coating method in field applications without the need for post-processing, or expensive equipment. CHT enabled operators to dynamically adjust heat application based on real-time feedback from the TLC coating, optimizing disbond detection. This method was successfully implemented by untrained operators with an accuracy of 100 %.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"301 ","pages":"Article 112516"},"PeriodicalIF":12.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825004172","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel Non-Destructive Evaluation (NDE) method for aerospace maintenance is introduced, utilizing advanced Thermochromic Liquid Crystal (TLC) ink to detect skin-to-core disbonds in carbon fiber-reinforced polymer (CFRP) honeycomb structures subjected to low-velocity impacts, representing a state-of-the-art integration of functional materials (TLC) with essential aerospace maintenance practices. Traditional NDE methods for detecting disbonds in aerospace structures often necessitate skilled technicians and sophisticated equipment. In contrast, the current study demonstrates that the proposed TLC coating method provides a straightforward, real-time detection technique that can serve as a preliminary or substitute inspection method. The detection and characterization results using the TLC coating method are rigorously evaluated through comparison with Forward-Looking Infrared (FLIR) by employing a high-performance thermal imaging camera. Results demonstrated that the TLC coating method achieved the same detection limits as FLIR thermography, with measurements of the disbond size differing by no more than 5 % between the two methods. A new heating method, Communicative Heating Thermography (CHT), was introduced for use with the TLC coating method in field applications without the need for post-processing, or expensive equipment. CHT enabled operators to dynamically adjust heat application based on real-time feedback from the TLC coating, optimizing disbond detection. This method was successfully implemented by untrained operators with an accuracy of 100 %.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.