{"title":"Hole controlled displacement behaviour of conducting polymer actuators","authors":"Sukesh Kumar , Aimin Yu , Mudrika Khandelwal","doi":"10.1016/j.compositesb.2025.112525","DOIUrl":null,"url":null,"abstract":"<div><div>The role of holes in the displacement behaviour of conducting polymer actuators is not emphasized much, hindering the design of actuators with a better response. Generally, it is assumed that the motion of ions limits the displacement of a conducting polymer because of their higher atomic mass compared to the effective mass of a hole or electron. Here, we report that the hole density of state (DOS) of a conducting polymer actuator could be another limiting factor for its displacement behaviour. Electrochemical techniques are used to estimate the DOS of a state-of-the-art conducting polymer, PEDOT:PSS. To capture the subsequent effect of changing the hole doping level and the kinetics of hole-ion transport, the electrochemical impedance of the PEDOT:PSS layer is measured while it is held at various constant voltages. To illustrate the effect of hole dynamics on the displacement of a conducting polymer actuator, the displacement of a PEDOT:PSS/bacterial cellulose actuator is recorded at various voltages and for different periods. The depletion and accumulation mode of operation is explained. The transients in the displacement of the actuator to the steady state are identified and explained, incorporating the electrochemical findings. The rate and magnitude of the displacement are found to be dependent on the hole doping level in a conducting polymer<strong>.</strong> The displacement of the actuator can be divided into three time scales; initial space charge (driven by drift current), filling up of high energy states (drift and diffusion), diffusion of ions (reflective or transmissive)</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"301 ","pages":"Article 112525"},"PeriodicalIF":12.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825004263","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The role of holes in the displacement behaviour of conducting polymer actuators is not emphasized much, hindering the design of actuators with a better response. Generally, it is assumed that the motion of ions limits the displacement of a conducting polymer because of their higher atomic mass compared to the effective mass of a hole or electron. Here, we report that the hole density of state (DOS) of a conducting polymer actuator could be another limiting factor for its displacement behaviour. Electrochemical techniques are used to estimate the DOS of a state-of-the-art conducting polymer, PEDOT:PSS. To capture the subsequent effect of changing the hole doping level and the kinetics of hole-ion transport, the electrochemical impedance of the PEDOT:PSS layer is measured while it is held at various constant voltages. To illustrate the effect of hole dynamics on the displacement of a conducting polymer actuator, the displacement of a PEDOT:PSS/bacterial cellulose actuator is recorded at various voltages and for different periods. The depletion and accumulation mode of operation is explained. The transients in the displacement of the actuator to the steady state are identified and explained, incorporating the electrochemical findings. The rate and magnitude of the displacement are found to be dependent on the hole doping level in a conducting polymer. The displacement of the actuator can be divided into three time scales; initial space charge (driven by drift current), filling up of high energy states (drift and diffusion), diffusion of ions (reflective or transmissive)
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.