{"title":"Bounds on Graceful k-colorings of graphs","authors":"Paola T. Pantoja , Simone Dantas , Atílio G. Luiz","doi":"10.1016/j.dam.2025.04.032","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the graceful <span><math><mi>k</mi></math></span>-coloring introduced by Gary Chartrand in 2015. The <em>graceful</em> <span><math><mi>k</mi></math></span><em>-coloring</em> of a graph <span><math><mi>G</mi></math></span> consists of a proper vertex coloring <span><math><mrow><mi>π</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span>, <span><math><mrow><mi>k</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, that induces a proper edge coloring <span><math><mrow><msup><mrow><mi>π</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>:</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span> defined by <span><math><mrow><msup><mrow><mi>π</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>u</mi><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>π</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mi>π</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. The smallest positive integer <span><math><mi>k</mi></math></span> for which a graph <span><math><mi>G</mi></math></span> has a graceful <span><math><mi>k</mi></math></span>-coloring is called the <em>graceful chromatic number</em> of <span><math><mi>G</mi></math></span> and is denoted by <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, we improve a previous upper bound for the graceful chromatic number of an arbitrary graph, showing that <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>Δ</mi><mo>+</mo><mn>1</mn></mrow></math></span>, where <span><math><mi>Δ</mi></math></span> is the maximum degree of the graph <span><math><mi>G</mi></math></span>. This also implies an improvement over the first bound given for complete graphs. Moreover, we study this problem within the context of cubic graph classes, determining the exact value of the graceful chromatic number of each member of the infinite families of the Generalized Blanuša and the Loupekine snarks.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 218-231"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2500201X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the graceful -coloring introduced by Gary Chartrand in 2015. The graceful-coloring of a graph consists of a proper vertex coloring , , that induces a proper edge coloring defined by , where . The smallest positive integer for which a graph has a graceful -coloring is called the graceful chromatic number of and is denoted by . In this paper, we improve a previous upper bound for the graceful chromatic number of an arbitrary graph, showing that , where is the maximum degree of the graph . This also implies an improvement over the first bound given for complete graphs. Moreover, we study this problem within the context of cubic graph classes, determining the exact value of the graceful chromatic number of each member of the infinite families of the Generalized Blanuša and the Loupekine snarks.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.