Bounds on Graceful k-colorings of graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Paola T. Pantoja , Simone Dantas , Atílio G. Luiz
{"title":"Bounds on Graceful k-colorings of graphs","authors":"Paola T. Pantoja ,&nbsp;Simone Dantas ,&nbsp;Atílio G. Luiz","doi":"10.1016/j.dam.2025.04.032","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the graceful <span><math><mi>k</mi></math></span>-coloring introduced by Gary Chartrand in 2015. The <em>graceful</em> <span><math><mi>k</mi></math></span><em>-coloring</em> of a graph <span><math><mi>G</mi></math></span> consists of a proper vertex coloring <span><math><mrow><mi>π</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span>, <span><math><mrow><mi>k</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, that induces a proper edge coloring <span><math><mrow><msup><mrow><mi>π</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>:</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span> defined by <span><math><mrow><msup><mrow><mi>π</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>u</mi><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>π</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mi>π</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. The smallest positive integer <span><math><mi>k</mi></math></span> for which a graph <span><math><mi>G</mi></math></span> has a graceful <span><math><mi>k</mi></math></span>-coloring is called the <em>graceful chromatic number</em> of <span><math><mi>G</mi></math></span> and is denoted by <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, we improve a previous upper bound for the graceful chromatic number of an arbitrary graph, showing that <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>Δ</mi><mo>+</mo><mn>1</mn></mrow></math></span>, where <span><math><mi>Δ</mi></math></span> is the maximum degree of the graph <span><math><mi>G</mi></math></span>. This also implies an improvement over the first bound given for complete graphs. Moreover, we study this problem within the context of cubic graph classes, determining the exact value of the graceful chromatic number of each member of the infinite families of the Generalized Blanuša and the Loupekine snarks.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 218-231"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2500201X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the graceful k-coloring introduced by Gary Chartrand in 2015. The graceful k-coloring of a graph G consists of a proper vertex coloring π:V(G){1,2,,k}, k1, that induces a proper edge coloring π:E(G){1,2,,k1} defined by π(uv)=|π(u)π(v)|, where uvE(G). The smallest positive integer k for which a graph G has a graceful k-coloring is called the graceful chromatic number of G and is denoted by χg(G). In this paper, we improve a previous upper bound for the graceful chromatic number of an arbitrary graph, showing that χg(G)2Δ2Δ+1, where Δ is the maximum degree of the graph G. This also implies an improvement over the first bound given for complete graphs. Moreover, we study this problem within the context of cubic graph classes, determining the exact value of the graceful chromatic number of each member of the infinite families of the Generalized Blanuša and the Loupekine snarks.
图的优美k色的界
我们研究了Gary Chartrand在2015年推出的优雅k色。图G的优美k-染色由一个适当的顶点染色π:V(G)→{1,2,…,k}, k≥1组成,它引出一个适当的边染色π ':E(G)→{1,2,…,k−1}定义为π ' (uv)=|π(u)−π(V)|,其中uv∈E(G)。图G具有优美k着色的最小正整数k称为G的优美色数,用χg(G)表示。本文改进了任意图优美色数的上界,证明了χg(G)≤2Δ2−Δ+1,其中Δ是图G的最大度。这也暗示了对完全图的上界的改进。此外,我们在三次图类的背景下研究了这个问题,确定了广义Blanuša和Loupekine snks无限族中每个成员的优美色数的精确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信