{"title":"Nordhaus–Gaddum decompositions for group coloring and DP coloring","authors":"Allan Bickle , Lucian Mazza","doi":"10.1016/j.dam.2025.04.034","DOIUrl":null,"url":null,"abstract":"<div><div>A Nordhaus–Gaddum theorem states bounds on <span><math><mrow><mi>p</mi><mfenced><mrow><mi>G</mi></mrow></mfenced><mo>+</mo><mi>p</mi><mfenced><mrow><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover></mrow></mfenced></mrow></math></span> and <span><math><mrow><mi>p</mi><mfenced><mrow><mi>G</mi></mrow></mfenced><mi>⋅</mi><mi>p</mi><mfenced><mrow><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover></mrow></mfenced></mrow></math></span> for some graph parameter <span><math><mrow><mi>p</mi><mfenced><mrow><mi>G</mi></mrow></mfenced></mrow></math></span>. We consider the sum upper bound for DP coloring and group coloring, and prove that for a graph <span><math><mi>G</mi></math></span> with order <span><math><mi>n</mi></math></span>, <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>D</mi><mi>P</mi></mrow></msub><mfenced><mrow><mi>G</mi></mrow></mfenced><mo>+</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>D</mi><mi>P</mi></mrow></msub><mfenced><mrow><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover></mrow></mfenced><mo>≤</mo><mi>n</mi><mo>+</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mfenced><mrow><mi>G</mi></mrow></mfenced><mo>+</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mfenced><mrow><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover></mrow></mfenced><mo>≤</mo><mi>n</mi><mo>+</mo><mn>1</mn></mrow></math></span>. Viewing <span><math><mfenced><mrow><mi>G</mi><mo>,</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover></mrow></mfenced></math></span> as a decomposition of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, we determine the extremal decompositions for these bounds.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 264-269"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001982","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A Nordhaus–Gaddum theorem states bounds on and for some graph parameter . We consider the sum upper bound for DP coloring and group coloring, and prove that for a graph with order , and . Viewing as a decomposition of , we determine the extremal decompositions for these bounds.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.