{"title":"Disassembly mediated multimodal chromatography based purification of HPV-VLPs produced in Pichia pastoris","authors":"Rashmi Sharma , Pragya Prakash , Lukas Gerstweiler , Anurag S. Rathore","doi":"10.1016/j.jviromet.2025.115168","DOIUrl":null,"url":null,"abstract":"<div><div>Human Papillomavirus Virus-Like Particles (HPV-VLPs) are a highly effective vaccine to prevent cervical cancer. Current production and purification processes for HPV-VLPs suffer from poor yield and suboptimal process economics. The current study presents a purification strategy based multi-modal cation exchange chromatography (Capto™ MMC) for the purification of HPV-VLPs produced in <em>Pichia pastoris</em>. Single step purification of disassembled VLPs offered a superior product recovery (> 80 %) and purity (> 70 %) compared to traditional VLP purification platforms that comprise anion exchange and cation exchange chromatography (yield: 32 %, purity: 52 %). Furthermore, it was observed that disassembling the intact VLPs to capsomere subunits before purification provided an improved dynamic binding capacity of up to 18.1 mg/mL (at 2 min residence time), 4 times higher than that with intact HPV-VLPs.</div></div>","PeriodicalId":17663,"journal":{"name":"Journal of virological methods","volume":"336 ","pages":"Article 115168"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of virological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166093425000618","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Human Papillomavirus Virus-Like Particles (HPV-VLPs) are a highly effective vaccine to prevent cervical cancer. Current production and purification processes for HPV-VLPs suffer from poor yield and suboptimal process economics. The current study presents a purification strategy based multi-modal cation exchange chromatography (Capto™ MMC) for the purification of HPV-VLPs produced in Pichia pastoris. Single step purification of disassembled VLPs offered a superior product recovery (> 80 %) and purity (> 70 %) compared to traditional VLP purification platforms that comprise anion exchange and cation exchange chromatography (yield: 32 %, purity: 52 %). Furthermore, it was observed that disassembling the intact VLPs to capsomere subunits before purification provided an improved dynamic binding capacity of up to 18.1 mg/mL (at 2 min residence time), 4 times higher than that with intact HPV-VLPs.
期刊介绍:
The Journal of Virological Methods focuses on original, high quality research papers that describe novel and comprehensively tested methods which enhance human, animal, plant, bacterial or environmental virology and prions research and discovery.
The methods may include, but not limited to, the study of:
Viral components and morphology-
Virus isolation, propagation and development of viral vectors-
Viral pathogenesis, oncogenesis, vaccines and antivirals-
Virus replication, host-pathogen interactions and responses-
Virus transmission, prevention, control and treatment-
Viral metagenomics and virome-
Virus ecology, adaption and evolution-
Applied virology such as nanotechnology-
Viral diagnosis with novelty and comprehensive evaluation.
We seek articles, systematic reviews, meta-analyses and laboratory protocols that include comprehensive technical details with statistical confirmations that provide validations against current best practice, international standards or quality assurance programs and which advance knowledge in virology leading to improved medical, veterinary or agricultural practices and management.