{"title":"Extending 17O transverse relaxation measurement to satellite transitions as a direct probe of molecular dynamics in solids","authors":"Yizhe Dai , Ivan Hung , Zhehong Gan , Gang Wu","doi":"10.1016/j.ssnmr.2025.102004","DOIUrl":null,"url":null,"abstract":"<div><div>We report utilization of transverse relaxation rate (<em>R</em><sub>2</sub>) of <sup>17</sup>O (<em>I</em> = 5/2) satellite transitions (STs) as a probe of molecular dynamics in solids. A simple theoretical model using spectral density functions is proposed to describe the general <em>R</em><sub>2</sub> behaviors of half-integer quadrupolar nuclei in solids in the presence of molecular motion (or chemical exchange). Experimental <sup>17</sup>O <em>R</em><sub>2</sub> data recorded for both CT and ST from <sup>17</sup>O-labeled NaNO<sub>2</sub> over a large temperature range are used to verify the theoretical predictions. Our theoretical model is shown to be fully consistent with a full quantum mechanical treatment of the chemical exchange problem involving half-integer quadrupolar nuclei in solids by numerically solving the Liouville-von Neumann equation. The new <sup>17</sup>O ST <em>R</em><sub>2</sub> method was also applied to study the carboxylate flipping motion in two [<sup>17</sup>O]carboxylic acid-pyridine adducts in the solid state. The advantages of the ST <em>R</em><sub>2</sub> approach are discussed. This ST <em>R</em><sub>2</sub> approach adds a new dimension to the currently available CT-based solid-state NMR techniques for probing molecular motion in solids.</div></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"137 ","pages":"Article 102004"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid state nuclear magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926204025000207","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We report utilization of transverse relaxation rate (R2) of 17O (I = 5/2) satellite transitions (STs) as a probe of molecular dynamics in solids. A simple theoretical model using spectral density functions is proposed to describe the general R2 behaviors of half-integer quadrupolar nuclei in solids in the presence of molecular motion (or chemical exchange). Experimental 17O R2 data recorded for both CT and ST from 17O-labeled NaNO2 over a large temperature range are used to verify the theoretical predictions. Our theoretical model is shown to be fully consistent with a full quantum mechanical treatment of the chemical exchange problem involving half-integer quadrupolar nuclei in solids by numerically solving the Liouville-von Neumann equation. The new 17O ST R2 method was also applied to study the carboxylate flipping motion in two [17O]carboxylic acid-pyridine adducts in the solid state. The advantages of the ST R2 approach are discussed. This ST R2 approach adds a new dimension to the currently available CT-based solid-state NMR techniques for probing molecular motion in solids.
期刊介绍:
The journal Solid State Nuclear Magnetic Resonance publishes original manuscripts of high scientific quality dealing with all experimental and theoretical aspects of solid state NMR. This includes advances in instrumentation, development of new experimental techniques and methodology, new theoretical insights, new data processing and simulation methods, and original applications of established or novel methods to scientific problems.