Synchrotron-based 3D X-ray computed tomography reveals root system architecture: Plastic responses to phosphorus placement

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE
Frederik J.T. van der Bom , Philipp D. Lösel , Andrew M. Kingston , Zhe H. Weng , Nelly S. Raymond , Anton Maksimenko , Daniel Hausermann , Michael J. Bell , Casey L. Doolette , Enzo Lombi , Peter M. Kopittke
{"title":"Synchrotron-based 3D X-ray computed tomography reveals root system architecture: Plastic responses to phosphorus placement","authors":"Frederik J.T. van der Bom ,&nbsp;Philipp D. Lösel ,&nbsp;Andrew M. Kingston ,&nbsp;Zhe H. Weng ,&nbsp;Nelly S. Raymond ,&nbsp;Anton Maksimenko ,&nbsp;Daniel Hausermann ,&nbsp;Michael J. Bell ,&nbsp;Casey L. Doolette ,&nbsp;Enzo Lombi ,&nbsp;Peter M. Kopittke","doi":"10.1016/j.geoderma.2025.117299","DOIUrl":null,"url":null,"abstract":"<div><div>We used synchrotron-based X-ray computed tomography (SRXCT) to visualize root distribution in soil cores. X-ray CT is emerging as a leading technique to study plant roots, but SRXCT offers potential advantages compared with conventional X-ray sources, including producing X-rays of higher intensity that are collimated, monochromatic and tuneable; delivering high-resolution data whilst avoiding issues such as beam-hardening and source divergence. We demonstrate the suitability of SRXCT for observing the root system of wheat plants growing in two soils (Calcisol and Ultisol) in response to placement of different phosphorus fertilisers. To optimize scanning quality, we tested the use of an inverse ‘mask’ in front of the soil cores to achieve a more uniform attenuation along the sample, thereby avoiding saturation of the detector along the thinnest parts of the soil cores. Secondly, we developed a deep learning approach for segmentation and quantification of root length and diameter. Our results demonstrate the use of SRXCT as a tool for studying root system architecture in soil at high spatial resolution. The SRXCT method marks a new stride towards advancing our understanding of root structures in unprecedented detail, opening further avenues for exploring plant-soil interactions.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"457 ","pages":"Article 117299"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706125001375","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We used synchrotron-based X-ray computed tomography (SRXCT) to visualize root distribution in soil cores. X-ray CT is emerging as a leading technique to study plant roots, but SRXCT offers potential advantages compared with conventional X-ray sources, including producing X-rays of higher intensity that are collimated, monochromatic and tuneable; delivering high-resolution data whilst avoiding issues such as beam-hardening and source divergence. We demonstrate the suitability of SRXCT for observing the root system of wheat plants growing in two soils (Calcisol and Ultisol) in response to placement of different phosphorus fertilisers. To optimize scanning quality, we tested the use of an inverse ‘mask’ in front of the soil cores to achieve a more uniform attenuation along the sample, thereby avoiding saturation of the detector along the thinnest parts of the soil cores. Secondly, we developed a deep learning approach for segmentation and quantification of root length and diameter. Our results demonstrate the use of SRXCT as a tool for studying root system architecture in soil at high spatial resolution. The SRXCT method marks a new stride towards advancing our understanding of root structures in unprecedented detail, opening further avenues for exploring plant-soil interactions.

Abstract Image

我们使用同步加速器 X 射线计算机断层扫描(SRXCT)来观察土壤核心中的根系分布。X 射线 CT 正在成为研究植物根系的领先技术,但与传统 X 射线源相比,SRXCT 具有潜在的优势,包括产生准直、单色和可调整的高强度 X 射线;提供高分辨率数据,同时避免光束硬化和光源发散等问题。我们展示了 SRXCT 是否适合用于观察生长在两种土壤(钙质土壤和超土壤)中的小麦植株根系对施用不同磷肥的反应。为了优化扫描质量,我们测试了在土壤核心前使用反向 "掩膜 "的方法,以实现沿样本更均匀的衰减,从而避免探测器沿土壤核心最薄部分的饱和。其次,我们开发了一种深度学习方法,用于分割和量化根的长度和直径。我们的研究结果表明,SRXCT 是一种在高空间分辨率下研究土壤根系结构的工具。SRXCT 方法标志着我们在以前所未有的细节推进对根系结构的理解方面迈出了新的一步,为探索植物与土壤的相互作用开辟了更多的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信