Four years of climate warming facilitates an increase in fungal necromass in coastal wetland soils

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE
Jine Wei , Chao Zhang , Dongliang Ma , Yanling Zheng , Fenfen Zhang , Xiaofei Li , Xia Liang , Hongpo Dong , Min Liu , Lijun Hou
{"title":"Four years of climate warming facilitates an increase in fungal necromass in coastal wetland soils","authors":"Jine Wei ,&nbsp;Chao Zhang ,&nbsp;Dongliang Ma ,&nbsp;Yanling Zheng ,&nbsp;Fenfen Zhang ,&nbsp;Xiaofei Li ,&nbsp;Xia Liang ,&nbsp;Hongpo Dong ,&nbsp;Min Liu ,&nbsp;Lijun Hou","doi":"10.1016/j.geoderma.2025.117296","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial necromass is a vital component of soil organic carbon (SOC) stock and substantially influences soil carbon cycling. The responses of microbial necromass carbon (MNC) in coastal wetland soils to global climate warming and the factors influencing these responses, however, remain largely unclear. In the present study, a 4-year field warming experiment (+1.5 °C) was conducted with open-top chambers to reveal the response of MNC in coastal wetland soils to climate warming. The results showed differences in responses between fungal and bacterial necromass carbon (FNC and BNC) to climate warming in the soil depth of 0–50 cm. FNC content substantially increased by 17.2 % in the warmed soils as compared to that in the control soils (<em>p</em> &lt; 0.05), whereas the content of BNC was not significantly different between the warmed and control soils (<em>p</em> &gt; 0.05). These responses of MNC to 4-year climate warming were consistent irrespective of soil depth. The accumulation of MNC under climate warming conditions may result from a plentiful substrate availability and an alteration from nitrogen to phosphorus nutrient utilization by microorganisms, rather than changes in microbial community composition. Collectively, this study uncovers the feedback mechanism of MNC to climate warming in coastal wetlands, and emphasizes an accumulation of MNC in the blue carbon pool of coastal wetland ecosystems.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"457 ","pages":"Article 117296"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001670612500134X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial necromass is a vital component of soil organic carbon (SOC) stock and substantially influences soil carbon cycling. The responses of microbial necromass carbon (MNC) in coastal wetland soils to global climate warming and the factors influencing these responses, however, remain largely unclear. In the present study, a 4-year field warming experiment (+1.5 °C) was conducted with open-top chambers to reveal the response of MNC in coastal wetland soils to climate warming. The results showed differences in responses between fungal and bacterial necromass carbon (FNC and BNC) to climate warming in the soil depth of 0–50 cm. FNC content substantially increased by 17.2 % in the warmed soils as compared to that in the control soils (p < 0.05), whereas the content of BNC was not significantly different between the warmed and control soils (p > 0.05). These responses of MNC to 4-year climate warming were consistent irrespective of soil depth. The accumulation of MNC under climate warming conditions may result from a plentiful substrate availability and an alteration from nitrogen to phosphorus nutrient utilization by microorganisms, rather than changes in microbial community composition. Collectively, this study uncovers the feedback mechanism of MNC to climate warming in coastal wetlands, and emphasizes an accumulation of MNC in the blue carbon pool of coastal wetland ecosystems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信