Michael Juhasz, Eric Chin, Youngsoo Choi, Joseph T. McKeown, Saad Khairallah
{"title":"Harnessing on-machine metrology data for prints with a surrogate model for laser powder directed energy deposition","authors":"Michael Juhasz, Eric Chin, Youngsoo Choi, Joseph T. McKeown, Saad Khairallah","doi":"10.1016/j.addma.2025.104745","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we leverage the massive amount of multi-modal on-machine metrology data generated from Laser Powder Directed Energy Deposition (LP-DED) to construct a comprehensive surrogate model of the 3D printing process. By employing Dynamic Mode Decomposition with Control (DMDc), a data-driven technique, we capture the complex physics inherent in this extensive dataset. This physics-based surrogate model emphasizes thermodynamically significant quantities, enabling us to accurately predict key process outcomes. The model ingests 21 process parameters, including laser power, scan rate, and position, while providing outputs such as melt pool temperature, melt pool size, and other essential observables. Furthermore, it incorporates uncertainty quantification to provide bounds on these predictions, enhancing reliability and confidence in the results. We then deploy the surrogate model on a new, unseen part and monitor the printing process as validation of the method. Our experimental results demonstrate that the predictions align with actual measurements with high accuracy, confirming the effectiveness of our approach. This methodology not only facilitates real-time predictions but also operates at process-relevant speeds, establishing a basis for implementing feedback control in LP-DED.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"105 ","pages":"Article 104745"},"PeriodicalIF":10.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425001095","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we leverage the massive amount of multi-modal on-machine metrology data generated from Laser Powder Directed Energy Deposition (LP-DED) to construct a comprehensive surrogate model of the 3D printing process. By employing Dynamic Mode Decomposition with Control (DMDc), a data-driven technique, we capture the complex physics inherent in this extensive dataset. This physics-based surrogate model emphasizes thermodynamically significant quantities, enabling us to accurately predict key process outcomes. The model ingests 21 process parameters, including laser power, scan rate, and position, while providing outputs such as melt pool temperature, melt pool size, and other essential observables. Furthermore, it incorporates uncertainty quantification to provide bounds on these predictions, enhancing reliability and confidence in the results. We then deploy the surrogate model on a new, unseen part and monitor the printing process as validation of the method. Our experimental results demonstrate that the predictions align with actual measurements with high accuracy, confirming the effectiveness of our approach. This methodology not only facilitates real-time predictions but also operates at process-relevant speeds, establishing a basis for implementing feedback control in LP-DED.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.