Eduardo N. Tominaga;Onel L. A. López;Tommy Svensson;Richard D. Souza;Hirley Alves
{"title":"On the Spectral Efficiency of Movable and Rotary Antenna Arrays Under Rician Fading","authors":"Eduardo N. Tominaga;Onel L. A. López;Tommy Svensson;Richard D. Souza;Hirley Alves","doi":"10.1109/OJCOMS.2025.3558304","DOIUrl":null,"url":null,"abstract":"Most works evaluating the performance of Multi-User Multiple-Input Multiple-Output (MU-MIMO) systems consider Access Points (APs) with fixed antennas, that is, without any movement capability. Recently, the idea of APs with antenna arrays that are able to move have gained traction among the research community. Many works evaluate the communications performance of Movable Antenna Arrays (MAAs) that can move on the horizontal plane. However, they require a very bulky, complex and expensive movement system. In this work, we propose a simpler and cheaper alternative: the utilization of Rotary Antenna Arrays (RAA)s, i.e., antenna arrays that can rotate. We also analyze the performance of a system in which the array is able to both move and rotate. We focus on narrowband machine-type communications use cases in indoor scenarios, where multiple devices communicate simultaneously with the same AP in the uplink. The movements and/or rotations of the array are computed in order to maximize the mean per-user achievable spectral efficiency, based on estimates of the locations of the active devices and using particle swarm optimization. We adopt a spatially correlated Rician fading channel model, and evaluate the resulting optimized performance of the different setups in terms of mean per-user achievable spectral efficiencies. Our numerical results show that both the optimal rotations and movements of the arrays can provide substantial performance gains when the line-of-sight components of the channel vectors are strong. Moreover, the simpler RAAs can outperform the MAAs when their movement area is constrained.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"2642-2659"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10950397","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10950397/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Most works evaluating the performance of Multi-User Multiple-Input Multiple-Output (MU-MIMO) systems consider Access Points (APs) with fixed antennas, that is, without any movement capability. Recently, the idea of APs with antenna arrays that are able to move have gained traction among the research community. Many works evaluate the communications performance of Movable Antenna Arrays (MAAs) that can move on the horizontal plane. However, they require a very bulky, complex and expensive movement system. In this work, we propose a simpler and cheaper alternative: the utilization of Rotary Antenna Arrays (RAA)s, i.e., antenna arrays that can rotate. We also analyze the performance of a system in which the array is able to both move and rotate. We focus on narrowband machine-type communications use cases in indoor scenarios, where multiple devices communicate simultaneously with the same AP in the uplink. The movements and/or rotations of the array are computed in order to maximize the mean per-user achievable spectral efficiency, based on estimates of the locations of the active devices and using particle swarm optimization. We adopt a spatially correlated Rician fading channel model, and evaluate the resulting optimized performance of the different setups in terms of mean per-user achievable spectral efficiencies. Our numerical results show that both the optimal rotations and movements of the arrays can provide substantial performance gains when the line-of-sight components of the channel vectors are strong. Moreover, the simpler RAAs can outperform the MAAs when their movement area is constrained.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.