Electric field–confined synthesis of single atomic TiOxCy electrocatalytic membranes

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yifan Gao, Shuai Liang, Chengxu Jiang, Mengyao Gu, Quanbiao Zhang, Ali Abdelhafiz, Zhen Zhang, Ying Han, Yang Yang, Xiaoyuan Zhang, Peng Liang, Ju Li, Xia Huang
{"title":"Electric field–confined synthesis of single atomic TiOxCy electrocatalytic membranes","authors":"Yifan Gao,&nbsp;Shuai Liang,&nbsp;Chengxu Jiang,&nbsp;Mengyao Gu,&nbsp;Quanbiao Zhang,&nbsp;Ali Abdelhafiz,&nbsp;Zhen Zhang,&nbsp;Ying Han,&nbsp;Yang Yang,&nbsp;Xiaoyuan Zhang,&nbsp;Peng Liang,&nbsp;Ju Li,&nbsp;Xia Huang","doi":"10.1126/sciadv.ads7154","DOIUrl":null,"url":null,"abstract":"<div >Electrocatalysis exhibits certain benefits for water purification, but the low performance of electrodes severely hampers its utility. Here, we report a general strategy for fabricating high-performance three-dimensional (3D) porous electrodes with ultrahigh electrochemical active surface area and single-atom catalysts from earth-abundant elements. We demonstrate a binder-free dual electrospinning-electrospraying (DESP) strategy to densely distribute single atomic Ti and titanium oxycarbide (TiO<i><sub>x</sub></i>C<i><sub>y</sub></i>) sub–3-nm clusters throughout interconnected carbon nanofibers (CNs). The composite offers ultrahigh conductivity and mechanical robustness (ultrasonication resistant). The resulting TiO<i><sub>x</sub></i>C<i><sub>y</sub></i> filtration membrane exhibits record-high water purification capability with excellent permeability (~8370 liter m<sup>−2</sup> hour<sup>−1</sup> bar<sup>−1</sup>), energy efficiency (e.g., &gt;99% removal of toxins within 1.25 s at 0.022 kWh·m<sup>−3</sup> per order), and erosion resistance. The hierarchical design of the TiO<i><sub>x</sub></i>C<i><sub>y</sub></i> membrane facilitates rapid and energy-efficient electrocatalysis through both direct electron transfer and indirect reactive oxygen species (<sup>1</sup>O<sub>2</sub>, <b>·</b>OH, and O<sub>2</sub><b>·</b><sup>−</sup>, etc.) oxidations. The electric field–confined DESP strategy provides a general platform for making high-performance 3D electrodes.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 16","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads7154","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads7154","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalysis exhibits certain benefits for water purification, but the low performance of electrodes severely hampers its utility. Here, we report a general strategy for fabricating high-performance three-dimensional (3D) porous electrodes with ultrahigh electrochemical active surface area and single-atom catalysts from earth-abundant elements. We demonstrate a binder-free dual electrospinning-electrospraying (DESP) strategy to densely distribute single atomic Ti and titanium oxycarbide (TiOxCy) sub–3-nm clusters throughout interconnected carbon nanofibers (CNs). The composite offers ultrahigh conductivity and mechanical robustness (ultrasonication resistant). The resulting TiOxCy filtration membrane exhibits record-high water purification capability with excellent permeability (~8370 liter m−2 hour−1 bar−1), energy efficiency (e.g., >99% removal of toxins within 1.25 s at 0.022 kWh·m−3 per order), and erosion resistance. The hierarchical design of the TiOxCy membrane facilitates rapid and energy-efficient electrocatalysis through both direct electron transfer and indirect reactive oxygen species (1O2, ·OH, and O2·, etc.) oxidations. The electric field–confined DESP strategy provides a general platform for making high-performance 3D electrodes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信