Cocrystals combining order and correlated disorder via colloidal crystal engineering with DNA

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuanwei Li, Wenjie Zhou, Yuan Zhou, Ho Fung Cheng, Byeongdu Lee, Xiaobing Hu, Eric W. Roth, Vinayak P. Dravid, Sharon C. Glotzer, Chad A. Mirkin
{"title":"Cocrystals combining order and correlated disorder via colloidal crystal engineering with DNA","authors":"Yuanwei Li,&nbsp;Wenjie Zhou,&nbsp;Yuan Zhou,&nbsp;Ho Fung Cheng,&nbsp;Byeongdu Lee,&nbsp;Xiaobing Hu,&nbsp;Eric W. Roth,&nbsp;Vinayak P. Dravid,&nbsp;Sharon C. Glotzer,&nbsp;Chad A. Mirkin","doi":"10.1126/sciadv.adu4919","DOIUrl":null,"url":null,"abstract":"<div >Colloidal cocrystallization enables the formation of multicomponent materials with unique physicochemical properties, yet the role of nanoparticle (NP) shape and specific ligand interactions to cocrystallize anisotropic and isotropic NPs, with order and correlated disorder, remains underexplored. Here, geometry-inspired strategies along with programmable DNA interactions are combined to achieve structural control of colloidal cocrystal assemblies. Coassembling polyhedral and spherical NPs with complementary DNA yields two classes of cocrystals: one where both components order, and another where polyhedral NPs form a periodic lattice, while spherical NPs remain disordered but spatially correlated with polyhedral edges and corners. The size ratio of the building blocks can be used to control the ordering of spherical NPs—smaller octahedral-to-sphere size ratios favor fully ordered cocrystals. Molecular dynamics simulations further elucidate the role of NP shapes and dimensions in the structural outcome of the cocrystal. This work provides a framework for deliberately targeting and accessing crystals with exotic multicomponent structures.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 16","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu4919","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu4919","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Colloidal cocrystallization enables the formation of multicomponent materials with unique physicochemical properties, yet the role of nanoparticle (NP) shape and specific ligand interactions to cocrystallize anisotropic and isotropic NPs, with order and correlated disorder, remains underexplored. Here, geometry-inspired strategies along with programmable DNA interactions are combined to achieve structural control of colloidal cocrystal assemblies. Coassembling polyhedral and spherical NPs with complementary DNA yields two classes of cocrystals: one where both components order, and another where polyhedral NPs form a periodic lattice, while spherical NPs remain disordered but spatially correlated with polyhedral edges and corners. The size ratio of the building blocks can be used to control the ordering of spherical NPs—smaller octahedral-to-sphere size ratios favor fully ordered cocrystals. Molecular dynamics simulations further elucidate the role of NP shapes and dimensions in the structural outcome of the cocrystal. This work provides a framework for deliberately targeting and accessing crystals with exotic multicomponent structures.

Abstract Image

利用DNA胶体晶体工程实现有序和相关无序的共晶结合
胶体共结晶可以形成具有独特物理化学性质的多组分材料,但纳米颗粒(NP)形状和特定配体相互作用在各向异性和各向同性NPs共结晶中的作用(有序和相关无序)仍未得到充分研究。在这里,几何启发的策略以及可编程的DNA相互作用相结合,以实现胶体共晶组件的结构控制。多面体和球形NPs与互补DNA共组装产生两类共晶:一类是两个组分有序,另一类是多面体NPs形成周期性晶格,而球形NPs保持无序,但与多面体边缘和角在空间上相关。构建块的尺寸比可以用来控制球形nps的有序性,较小的八面体与球体的尺寸比有利于完全有序的共晶。分子动力学模拟进一步阐明了NP形状和尺寸在共晶结构结果中的作用。这项工作为有意瞄准和获取具有奇异多组分结构的晶体提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信