{"title":"Reciprocal phosphorylation between SOAK1 and SOBIR1 fine-tunes receptor-like protein (RLP)–mediated plant immunity","authors":"Yongming Chen, Yingying Song, Zhipeng Tu, Weishuai Bi, Congcong Sun, Tingting Zhao, Xiaodan Wang, Daolong Dou, Guangyuan Xu","doi":"10.1126/sciadv.adt2315","DOIUrl":null,"url":null,"abstract":"<div >SUPPRESSOR OF BIR1-1 (SOBIR1) is a receptor-like kinase (RLK) that acts as a coreceptor for multiple receptor-like proteins (RLPs) to mediate pathogen-associated molecular pattern)–triggered immunity. However, the regulation of SOBIR1 homeostasis and activity remains largely unknown. Our study reveals that SOBIR1-ASSOCIATED PROTEIN KINASE 1 (SOAK1), a member of the receptor-like cytoplasmic kinase (RLCK)-V subfamily with a transmembrane domain, negatively regulates multiple RLP-mediated immune responses. SOAK1 constitutively interacts with SOBIR1 and modulates SOBIR1-dependent immune signaling. SOAK1 directly phosphorylates SOBIR1 at serine-406, substantially impairing its ability to transphosphorylate itself and BAK1. The conservation of serine-406 residue among various flowering plants suggests that phosphorylation at this site plays a critical role in regulating plant immunity. Conversely, SOBIR1 also phosphorylates SOAK1 primarily at serine-73, inhibiting SOAK1’s kinase activity and derepressing SOBIR1 activity. This study elucidates a regulatory mechanism for SOBIR1 activity and highlights an uncharacterized role of RLCK-V subfamily members in plant immunity.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 16","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt2315","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt2315","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
SUPPRESSOR OF BIR1-1 (SOBIR1) is a receptor-like kinase (RLK) that acts as a coreceptor for multiple receptor-like proteins (RLPs) to mediate pathogen-associated molecular pattern)–triggered immunity. However, the regulation of SOBIR1 homeostasis and activity remains largely unknown. Our study reveals that SOBIR1-ASSOCIATED PROTEIN KINASE 1 (SOAK1), a member of the receptor-like cytoplasmic kinase (RLCK)-V subfamily with a transmembrane domain, negatively regulates multiple RLP-mediated immune responses. SOAK1 constitutively interacts with SOBIR1 and modulates SOBIR1-dependent immune signaling. SOAK1 directly phosphorylates SOBIR1 at serine-406, substantially impairing its ability to transphosphorylate itself and BAK1. The conservation of serine-406 residue among various flowering plants suggests that phosphorylation at this site plays a critical role in regulating plant immunity. Conversely, SOBIR1 also phosphorylates SOAK1 primarily at serine-73, inhibiting SOAK1’s kinase activity and derepressing SOBIR1 activity. This study elucidates a regulatory mechanism for SOBIR1 activity and highlights an uncharacterized role of RLCK-V subfamily members in plant immunity.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.