Central π-conjugated extension in quinoxaline-based small-molecule acceptors as guest components enabling high-performance ternary organic solar cells†
Chung Hang Kwok, Ho Ming Ng, Chuanlin Gao, Huawei Hu, Top Archie Dela Peña, Joshua Yuk Lin Lai, Li Chen, Lan Xie, Mingjie Li, Jiaying Wu, Guangye Zhang, Wai-Yeung Wong, He Yan and Han Yu
{"title":"Central π-conjugated extension in quinoxaline-based small-molecule acceptors as guest components enabling high-performance ternary organic solar cells†","authors":"Chung Hang Kwok, Ho Ming Ng, Chuanlin Gao, Huawei Hu, Top Archie Dela Peña, Joshua Yuk Lin Lai, Li Chen, Lan Xie, Mingjie Li, Jiaying Wu, Guangye Zhang, Wai-Yeung Wong, He Yan and Han Yu","doi":"10.1039/D5TA00204D","DOIUrl":null,"url":null,"abstract":"<p >Ternary strategies have critical roles in pursuing high efficiencies for organic solar cells (OSCs). However, the optimization of ternary systems relies heavily on understanding the compatibility and performance of different guest/host combinations. To establish design principles of quinoxaline (Qx)-based small-molecule acceptors (SMAs) as guest components for ternary OSCs, a new Qx-SMA named Qx-Ac and two reported Qx-SMAs named Qx-B and Qx-Pn were synthesized by extending the central Qx core with benzene (B), acenaphthene (Ac) and phenanthrene (Pn), respectively. After blending with PM6:BTP-eC9 (17.55%), Qx-Ac (18.51%) and Qx-Pn (18.11%) devices exhibited superior phase segregation and lower energy disorder. The improvement in Qx-Pn devices was dampened by inferior absorption, while the use of Qx-B (17.56%) did not improve the device at all. This work delineates the significant influence of Qx core extension on ternary guest compatibility, providing valuable insights and guidance for the design of ternary systems towards higher efficiencies for OSCs.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 20","pages":" 14765-14772"},"PeriodicalIF":9.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d5ta00204d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta00204d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ternary strategies have critical roles in pursuing high efficiencies for organic solar cells (OSCs). However, the optimization of ternary systems relies heavily on understanding the compatibility and performance of different guest/host combinations. To establish design principles of quinoxaline (Qx)-based small-molecule acceptors (SMAs) as guest components for ternary OSCs, a new Qx-SMA named Qx-Ac and two reported Qx-SMAs named Qx-B and Qx-Pn were synthesized by extending the central Qx core with benzene (B), acenaphthene (Ac) and phenanthrene (Pn), respectively. After blending with PM6:BTP-eC9 (17.55%), Qx-Ac (18.51%) and Qx-Pn (18.11%) devices exhibited superior phase segregation and lower energy disorder. The improvement in Qx-Pn devices was dampened by inferior absorption, while the use of Qx-B (17.56%) did not improve the device at all. This work delineates the significant influence of Qx core extension on ternary guest compatibility, providing valuable insights and guidance for the design of ternary systems towards higher efficiencies for OSCs.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.