Metabolic rewiring caused by mitochondrial dysfunction promotes mTORC1-dependent skeletal aging

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Kristina Bubb, Julia Etich, Kristina Probst, Tanvi Parashar, Maximilian Schuetter, Frederik Dethloff, Susanna Reincke, Janica L. Nolte, Marcus Krüger, Ursula Schlötzer-Schrehard, Julian Nüchel, Constantinos Demetriades, Patrick Giavalisco, Jan Riemer, Bent Brachvogel
{"title":"Metabolic rewiring caused by mitochondrial dysfunction promotes mTORC1-dependent skeletal aging","authors":"Kristina Bubb,&nbsp;Julia Etich,&nbsp;Kristina Probst,&nbsp;Tanvi Parashar,&nbsp;Maximilian Schuetter,&nbsp;Frederik Dethloff,&nbsp;Susanna Reincke,&nbsp;Janica L. Nolte,&nbsp;Marcus Krüger,&nbsp;Ursula Schlötzer-Schrehard,&nbsp;Julian Nüchel,&nbsp;Constantinos Demetriades,&nbsp;Patrick Giavalisco,&nbsp;Jan Riemer,&nbsp;Bent Brachvogel","doi":"10.1126/sciadv.ads1842","DOIUrl":null,"url":null,"abstract":"<div >Decline of mitochondrial respiratory chain (mtRC) capacity is a hallmark of mitochondrial diseases. Patients with mtRC dysfunction often present reduced skeletal growth as a sign of premature cartilage degeneration and aging, but how metabolic adaptations contribute to this phenotype is poorly understood. Here we show that, in mice with impaired mtRC in cartilage, reductive/reverse TCA cycle segments are activated to produce metabolite-derived amino acids and stimulate biosynthesis processes by mechanistic target of rapamycin complex 1 (mTORC1) activation during a period of massive skeletal growth and biomass production. However, chronic hyperactivation of mTORC1 suppresses autophagy-mediated organelle recycling and disturbs extracellular matrix secretion to trigger chondrocytes death, which is ameliorated by targeting the reductive metabolism. These findings explain how a primarily beneficial metabolic adaptation response required to counterbalance the loss of mtRC function, eventually translates into profound cell death and cartilage tissue degeneration. The knowledge of these dysregulated key nutrient signaling pathways can be used to target skeletal aging in mitochondrial disease.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 16","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads1842","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads1842","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Decline of mitochondrial respiratory chain (mtRC) capacity is a hallmark of mitochondrial diseases. Patients with mtRC dysfunction often present reduced skeletal growth as a sign of premature cartilage degeneration and aging, but how metabolic adaptations contribute to this phenotype is poorly understood. Here we show that, in mice with impaired mtRC in cartilage, reductive/reverse TCA cycle segments are activated to produce metabolite-derived amino acids and stimulate biosynthesis processes by mechanistic target of rapamycin complex 1 (mTORC1) activation during a period of massive skeletal growth and biomass production. However, chronic hyperactivation of mTORC1 suppresses autophagy-mediated organelle recycling and disturbs extracellular matrix secretion to trigger chondrocytes death, which is ameliorated by targeting the reductive metabolism. These findings explain how a primarily beneficial metabolic adaptation response required to counterbalance the loss of mtRC function, eventually translates into profound cell death and cartilage tissue degeneration. The knowledge of these dysregulated key nutrient signaling pathways can be used to target skeletal aging in mitochondrial disease.

Abstract Image

线粒体功能障碍引起的代谢重布线促进mtorc1依赖性骨骼衰老
线粒体呼吸链(mtRC)能力下降是线粒体疾病的标志。mtRC功能障碍患者通常表现为骨骼生长减少,这是软骨过早退变和衰老的迹象,但代谢适应如何促成这种表型尚不清楚。本研究表明,在软骨中mtRC受损的小鼠中,还原/反向TCA循环片段被激活以产生代谢物衍生的氨基酸,并在大量骨骼生长和生物质生产期间通过雷帕霉素复合物1 (mTORC1)激活的机制靶点刺激生物合成过程。然而,mTORC1的慢性过度激活会抑制自噬介导的细胞器循环,并扰乱细胞外基质分泌,从而引发软骨细胞死亡,这可以通过靶向还原性代谢来改善。这些发现解释了平衡mtRC功能丧失所需的主要有益代谢适应反应如何最终转化为严重的细胞死亡和软骨组织变性。这些失调的关键营养信号通路的知识可用于针对线粒体疾病中的骨骼老化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信