Manuel J. Mallén-Ponce, Andrea M. Quintero-Moreno, Samuel Gámez-Arcas, Arthur R. Grossman, María Esther Pérez-Pérez, José L. Crespo
{"title":"Dihydroxyacetone phosphate generated in the chloroplast mediates the activation of TOR by CO2 and light","authors":"Manuel J. Mallén-Ponce, Andrea M. Quintero-Moreno, Samuel Gámez-Arcas, Arthur R. Grossman, María Esther Pérez-Pérez, José L. Crespo","doi":"10.1126/sciadv.adu1240","DOIUrl":null,"url":null,"abstract":"<div >Light and CO<sub>2</sub> assimilation activate the target of rapamycin (TOR) kinase in photosynthetic cells, but how these signals are transmitted to TOR is unknown. Using the green alga <i>Chlamydomonas reinhardtii</i> as a model system, we identified dihydroxyacetone phosphate (DHAP) as the key metabolite regulating TOR in response to carbon and light cues. Metabolomic analyses of synchronized cells revealed that DHAP levels change more than any other metabolite between dark- and light-grown cells and that the addition of the DHAP precursor, dihydroxyacetone (DHA), was sufficient to activate TOR in the dark. We also demonstrated that TOR was insensitive to light or inorganic carbon but not to exogenous DHA in a <i>Chlamydomonas</i> mutant defective in the export of DHAP from the chloroplast. Our results provide a metabolic basis for the mode of TOR control by light and inorganic carbon and indicate that cytoplasmic DHAP is an important metabolic regulator of TOR.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 16","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu1240","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu1240","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Light and CO2 assimilation activate the target of rapamycin (TOR) kinase in photosynthetic cells, but how these signals are transmitted to TOR is unknown. Using the green alga Chlamydomonas reinhardtii as a model system, we identified dihydroxyacetone phosphate (DHAP) as the key metabolite regulating TOR in response to carbon and light cues. Metabolomic analyses of synchronized cells revealed that DHAP levels change more than any other metabolite between dark- and light-grown cells and that the addition of the DHAP precursor, dihydroxyacetone (DHA), was sufficient to activate TOR in the dark. We also demonstrated that TOR was insensitive to light or inorganic carbon but not to exogenous DHA in a Chlamydomonas mutant defective in the export of DHAP from the chloroplast. Our results provide a metabolic basis for the mode of TOR control by light and inorganic carbon and indicate that cytoplasmic DHAP is an important metabolic regulator of TOR.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.