Xiaorong Lin, Yanhua Du, Shuo Kan, Junjie Chen, Yunxue Yin, Linlin Li, Jingwen Chen, Wenrong Jiang, Wenqiang Cao, Chulwoo Kim, Liang Chen, Shiwen Wang, Jorg J. Goronzy, Jun Jin
{"title":"Sustained mTORC1 activation in activated T cells impairs vaccine responses in older individuals","authors":"Xiaorong Lin, Yanhua Du, Shuo Kan, Junjie Chen, Yunxue Yin, Linlin Li, Jingwen Chen, Wenrong Jiang, Wenqiang Cao, Chulwoo Kim, Liang Chen, Shiwen Wang, Jorg J. Goronzy, Jun Jin","doi":"10.1126/sciadv.adt4881","DOIUrl":null,"url":null,"abstract":"<div >T cell aging contributes to the lower vaccine efficacy in older adults, yet the molecular mechanism remains elusive. Here, we show the density of initially responding naïve CD4<sup>+</sup> T cells is instructive in T follicular helper (TFH) cell fate decisions and declines with age. A lower number of initially responding cells did not affect TFH differentiation at peak responses after immunization but accounted for an increased contraction phase manifesting as a larger loss of CXCR5 expression. Mechanistically, cells activated at a lower initial density had more sustained mammalian target of rapamycin complex 1 (mTORC1) activities that impair CXCR5 maintenance. YAP-dependent regulation of SLC7A5 involved in the cell density–dependent regulation of mTORC1 activities and TFH loss. Old mice fed with a leucine-restricted diet after peak responses showed smaller TFH loss and improved humoral immune responses. Attenuating mTORC1 signaling after peak response is a strategy to boost vaccine responses in older individuals.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 16","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt4881","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt4881","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
T cell aging contributes to the lower vaccine efficacy in older adults, yet the molecular mechanism remains elusive. Here, we show the density of initially responding naïve CD4+ T cells is instructive in T follicular helper (TFH) cell fate decisions and declines with age. A lower number of initially responding cells did not affect TFH differentiation at peak responses after immunization but accounted for an increased contraction phase manifesting as a larger loss of CXCR5 expression. Mechanistically, cells activated at a lower initial density had more sustained mammalian target of rapamycin complex 1 (mTORC1) activities that impair CXCR5 maintenance. YAP-dependent regulation of SLC7A5 involved in the cell density–dependent regulation of mTORC1 activities and TFH loss. Old mice fed with a leucine-restricted diet after peak responses showed smaller TFH loss and improved humoral immune responses. Attenuating mTORC1 signaling after peak response is a strategy to boost vaccine responses in older individuals.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.