Broadband localization of light at the termination of a topological photonic waveguide

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Daniel Muis, Yandong Li, René Barczyk, Sonakshi Arora, L. Kuipers, Gennady Shvets, Ewold Verhagen
{"title":"Broadband localization of light at the termination of a topological photonic waveguide","authors":"Daniel Muis,&nbsp;Yandong Li,&nbsp;René Barczyk,&nbsp;Sonakshi Arora,&nbsp;L. Kuipers,&nbsp;Gennady Shvets,&nbsp;Ewold Verhagen","doi":"10.1126/sciadv.adr9569","DOIUrl":null,"url":null,"abstract":"<div >Localized optical field enhancement enables strong light-matter interactions necessary for efficient manipulation and sensing of light. Specifically, tunable broadband energy localization in nanoscale hotspots offers many applications in nanophotonics and quantum optics. We experimentally demonstrate a mechanism for the local enhancement of electromagnetic fields based on strong suppression of backscattering. This is achieved at a designed termination of a topologically nontrivial waveguide that nearly preserves the valley degree of freedom. The symmetry origin of the valley degree of freedom prevents edge states to undergo intervalley scattering at waveguide discontinuities that obey the symmetry of the crystal. Using near-field microscopy, we reveal that this leads to strong confinement of light at the termination of a topological photonic waveguide, even without breaking reciprocity. We emphasize the importance of symmetry conservation by comparing different waveguide termination geometries, confirming that the origin of suppressed backscattering lies with the near conservation of the valley degree of freedom, and show the broad bandwidth of the effect.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 16","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adr9569","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adr9569","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Localized optical field enhancement enables strong light-matter interactions necessary for efficient manipulation and sensing of light. Specifically, tunable broadband energy localization in nanoscale hotspots offers many applications in nanophotonics and quantum optics. We experimentally demonstrate a mechanism for the local enhancement of electromagnetic fields based on strong suppression of backscattering. This is achieved at a designed termination of a topologically nontrivial waveguide that nearly preserves the valley degree of freedom. The symmetry origin of the valley degree of freedom prevents edge states to undergo intervalley scattering at waveguide discontinuities that obey the symmetry of the crystal. Using near-field microscopy, we reveal that this leads to strong confinement of light at the termination of a topological photonic waveguide, even without breaking reciprocity. We emphasize the importance of symmetry conservation by comparing different waveguide termination geometries, confirming that the origin of suppressed backscattering lies with the near conservation of the valley degree of freedom, and show the broad bandwidth of the effect.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信