AAV vectors trigger DNA damage response-dependent pro-inflammatory signalling in human iPSC-derived CNS models and mouse brain

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Helena Costa-Verdera, Vasco Meneghini, Zachary Fitzpatrick, Monah Abou Alezz, Emily Fabyanic, Xin Huang, Yulia Dzhashiashvili, Avantika Ahiya, Elisabeth Mangiameli, Erika Valeri, Giovanni Crivicich, Silvia Piccolo, Ivan Cuccovillo, Roberta Caccia, Ying Kai Chan, Bérangère Bertin, Giuseppe Ronzitti, Esteban A. Engel, Ivan Merelli, Federico Mingozzi, Angela Gritti, Klaudia Kuranda, Anna Kajaste-Rudnitski
{"title":"AAV vectors trigger DNA damage response-dependent pro-inflammatory signalling in human iPSC-derived CNS models and mouse brain","authors":"Helena Costa-Verdera, Vasco Meneghini, Zachary Fitzpatrick, Monah Abou Alezz, Emily Fabyanic, Xin Huang, Yulia Dzhashiashvili, Avantika Ahiya, Elisabeth Mangiameli, Erika Valeri, Giovanni Crivicich, Silvia Piccolo, Ivan Cuccovillo, Roberta Caccia, Ying Kai Chan, Bérangère Bertin, Giuseppe Ronzitti, Esteban A. Engel, Ivan Merelli, Federico Mingozzi, Angela Gritti, Klaudia Kuranda, Anna Kajaste-Rudnitski","doi":"10.1038/s41467-025-58778-3","DOIUrl":null,"url":null,"abstract":"<p>Adeno-associated viral (AAV) vector-based gene therapy is gaining foothold as treatment for genetic neurological diseases with encouraging clinical results. Nonetheless, dose-dependent adverse events have emerged in recent clinical trials through mechanisms that remain unclear. We have modelled here the impact of AAV transduction in cell models of the human central nervous system (CNS), taking advantage of induced pluripotent stem cells. Our work uncovers vector-induced innate immune mechanisms that contribute to cell death. While empty AAV capsids were well tolerated, the AAV genome triggered p53-dependent DNA damage responses across CNS cell types followed by the induction of inflammatory responses. In addition, transgene expression led to MAVS-dependent activation of type I interferon responses. Formation of DNA damage foci in neurons and gliosis were confirmed in murine striatum upon intraparenchymal AAV injection. Transduction-induced cell death and gliosis could be prevented by inhibiting p53 or by acting downstream on STING- or IL-1R-mediated responses. Together, our work identifies innate immune mechanisms of vector sensing in the CNS that can potentially contribute to AAV-associated neurotoxicity.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"44 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58778-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Adeno-associated viral (AAV) vector-based gene therapy is gaining foothold as treatment for genetic neurological diseases with encouraging clinical results. Nonetheless, dose-dependent adverse events have emerged in recent clinical trials through mechanisms that remain unclear. We have modelled here the impact of AAV transduction in cell models of the human central nervous system (CNS), taking advantage of induced pluripotent stem cells. Our work uncovers vector-induced innate immune mechanisms that contribute to cell death. While empty AAV capsids were well tolerated, the AAV genome triggered p53-dependent DNA damage responses across CNS cell types followed by the induction of inflammatory responses. In addition, transgene expression led to MAVS-dependent activation of type I interferon responses. Formation of DNA damage foci in neurons and gliosis were confirmed in murine striatum upon intraparenchymal AAV injection. Transduction-induced cell death and gliosis could be prevented by inhibiting p53 or by acting downstream on STING- or IL-1R-mediated responses. Together, our work identifies innate immune mechanisms of vector sensing in the CNS that can potentially contribute to AAV-associated neurotoxicity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信