Organic magnetic nanoparticles catalyze CO2 capture in hydrogen-bonded nanocages via water-driven crystallization

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Tian Wang, Aliakbar Hassanpouryouzband, Mengge Fan, Chalachew Mebrahtu, Lunxiang Zhang, Yongchen Song
{"title":"Organic magnetic nanoparticles catalyze CO2 capture in hydrogen-bonded nanocages via water-driven crystallization","authors":"Tian Wang, Aliakbar Hassanpouryouzband, Mengge Fan, Chalachew Mebrahtu, Lunxiang Zhang, Yongchen Song","doi":"10.1038/s41467-025-58734-1","DOIUrl":null,"url":null,"abstract":"<p>Limiting global warming increasingly relies on the development of environmentally friendly CO<sub>2</sub> capture strategies. Crystallization is renowned for versatile separation and purification, yet traditional compound crystallization-based CO<sub>2</sub> capture still necessitates intricate preparation processes, stringent reaction conditions, and high regenerative energy consumption. As an ambitious sustainability goal, natural water could be used as a precursor of crystallization to construct hydrogen-bonded water cages for CO<sub>2</sub> capture, but main obstacles are slow crystallization kinetics and low capture capacity. Here, a water-activation-induced crystallization strategy by organic magnetic nanoparticles (Methionine@Fe<sub>3</sub>O<sub>4</sub>) has been proposed for efficient CO<sub>2</sub> capture. Local water ordering strengthened by hydrophobic amino acids and abundant nucleation sites provided by nanoparticles create hotspots for hydration phase transition and crystal growth, with a CO<sub>2</sub> capture capacity of 118.7 v/v (22.7 wt%). Favorable biocompatibility and stable performance are conducive to the industrial application of this nanomaterial, and the excellent magnetic recyclable property enables simple separation from clean water. This strategy demonstrates an extraordinary CO<sub>2</sub> capture potential compared to state-of-the-art systems, thus providing an inspiration for sustainable CO<sub>2</sub> capture and storage with zero resource depletion (ZRD).</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"21 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58734-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Limiting global warming increasingly relies on the development of environmentally friendly CO2 capture strategies. Crystallization is renowned for versatile separation and purification, yet traditional compound crystallization-based CO2 capture still necessitates intricate preparation processes, stringent reaction conditions, and high regenerative energy consumption. As an ambitious sustainability goal, natural water could be used as a precursor of crystallization to construct hydrogen-bonded water cages for CO2 capture, but main obstacles are slow crystallization kinetics and low capture capacity. Here, a water-activation-induced crystallization strategy by organic magnetic nanoparticles (Methionine@Fe3O4) has been proposed for efficient CO2 capture. Local water ordering strengthened by hydrophobic amino acids and abundant nucleation sites provided by nanoparticles create hotspots for hydration phase transition and crystal growth, with a CO2 capture capacity of 118.7 v/v (22.7 wt%). Favorable biocompatibility and stable performance are conducive to the industrial application of this nanomaterial, and the excellent magnetic recyclable property enables simple separation from clean water. This strategy demonstrates an extraordinary CO2 capture potential compared to state-of-the-art systems, thus providing an inspiration for sustainable CO2 capture and storage with zero resource depletion (ZRD).

Abstract Image

限制全球变暖越来越依赖于开发环境友好型二氧化碳捕获战略。结晶以多功能分离和纯化而闻名,但传统的基于化合物结晶的二氧化碳捕获仍然需要复杂的制备过程、严格的反应条件和高再生能耗。作为一个雄心勃勃的可持续发展目标,天然水可用作结晶的前驱体,以构建氢键水笼来捕获二氧化碳,但主要障碍是结晶动力学缓慢和捕获能力低。在此,我们提出了一种利用有机磁性纳米粒子(蛋氨酸@Fe3O4)的水活化诱导结晶策略,以实现高效的二氧化碳捕获。疏水氨基酸加强了局部水有序性,纳米粒子提供了丰富的成核位点,为水合相变和晶体生长创造了热点,二氧化碳捕获能力达到 118.7 v/v(22.7 wt%)。良好的生物相容性和稳定的性能有利于这种纳米材料的工业应用,而其优异的磁性可回收特性则可使其从净水中简单分离。与最先进的系统相比,这种策略展示了非凡的二氧化碳捕集潜力,从而为零资源损耗(ZRD)的可持续二氧化碳捕集与封存提供了灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信