Three-dimensional computational fluid dynamics study of liquid flow characteristics and flooding behaviors in corrugated packing

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2025-04-18 DOI:10.1002/aic.18870
Shiji Xu, Cong Gao, Yuxin Zhang, Kehan Wang, Hongkang Zhao, Qunsheng Li, Jiaxing Xue
{"title":"Three-dimensional computational fluid dynamics study of liquid flow characteristics and flooding behaviors in corrugated packing","authors":"Shiji Xu, Cong Gao, Yuxin Zhang, Kehan Wang, Hongkang Zhao, Qunsheng Li, Jiaxing Xue","doi":"10.1002/aic.18870","DOIUrl":null,"url":null,"abstract":"Fluid flow behavior in packed columns is complex, with notable differences between the constant liquid hold-up region and the flooding region. This study numerically investigates the gas–liquid flow behavior for various contact angle (CA) and liquid load (<i>L</i>) conditions in both regions, using the volume of fluid-continuum surface force model. In the constant liquid hold-up region, CA and <i>L</i> significantly affect the liquid flow pattern, liquid hold-up, wetting rate, interfacial area ratio, pressure drop, and axial and radial distributions of liquid. In the flooding region, the dynamics of flooding evolution, critical conditions, and triggering mechanisms are analyzed under different CAs, considering the packing geometry, liquid hold-up, pressure drop, and interfacial area ratio. The results show that liquid accumulation at the bottom of the packing, caused by edge effects, is a key factor triggering flooding.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"108 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18870","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fluid flow behavior in packed columns is complex, with notable differences between the constant liquid hold-up region and the flooding region. This study numerically investigates the gas–liquid flow behavior for various contact angle (CA) and liquid load (L) conditions in both regions, using the volume of fluid-continuum surface force model. In the constant liquid hold-up region, CA and L significantly affect the liquid flow pattern, liquid hold-up, wetting rate, interfacial area ratio, pressure drop, and axial and radial distributions of liquid. In the flooding region, the dynamics of flooding evolution, critical conditions, and triggering mechanisms are analyzed under different CAs, considering the packing geometry, liquid hold-up, pressure drop, and interfacial area ratio. The results show that liquid accumulation at the bottom of the packing, caused by edge effects, is a key factor triggering flooding.
波纹填料中流体流动特性及驱油行为的三维计算流体动力学研究
填料塔内流体流动特性复杂,恒液持率区与泛水区存在显著差异。采用体积流体-连续体表面力模型,对两区域不同接触角(CA)和液体载荷(L)条件下的气液流动特性进行了数值研究。在恒液持率区,CA和L显著影响液体的流动形态、液持率、润湿速率、界面面积比、压降以及液体的轴向和径向分布。在驱油区,考虑充填几何形状、液持率、压降和界面面积比等因素,分析了不同CAs下驱油演化动力学、临界条件和触发机制。结果表明,填料底部由边缘效应引起的液体积聚是引发驱油的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信