Expanding catalytic versatility of modular polyketide synthases for alcohol biosynthesis

IF 12.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shunyu Yao, Shengling Xie, Run-Zhou Liu, Zilei Huang, Lihan Zhang
{"title":"Expanding catalytic versatility of modular polyketide synthases for alcohol biosynthesis","authors":"Shunyu Yao, Shengling Xie, Run-Zhou Liu, Zilei Huang, Lihan Zhang","doi":"10.1038/s41589-025-01883-7","DOIUrl":null,"url":null,"abstract":"<p>Modular polyketide synthases biosynthesize structurally diverse natural products by a set of catalytic domains that operate in an assembly line fashion. Although extensive research has focused on the rational reprogramming of modular polyketide synthases, little has been attempted to introduce noncanonical catalytic reactions on the assembly line. Here, we demonstrate the insertion of a thioester reductase domain, which can generate a terminal alcohol group instead of the canonical carboxylic acid, onto the assembly line polyketide synthases. We show that the didomain insertion of the acyl carrier protein and thioester reductase pair is generally effective for engineering of various polyketide synthase pathways. As a proof of concept, stereoselective and stereodivergent bioproduction of non-natural diols, namely, 1,3-butanediols and 2-methyl-1,3-butanediols, is achieved by harnessing the modularity of polyketide synthases. Our study expands the catalytic versatility of modular polyketide synthases and paves the way toward biosynthesis of designer alcohols.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"37 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-025-01883-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Modular polyketide synthases biosynthesize structurally diverse natural products by a set of catalytic domains that operate in an assembly line fashion. Although extensive research has focused on the rational reprogramming of modular polyketide synthases, little has been attempted to introduce noncanonical catalytic reactions on the assembly line. Here, we demonstrate the insertion of a thioester reductase domain, which can generate a terminal alcohol group instead of the canonical carboxylic acid, onto the assembly line polyketide synthases. We show that the didomain insertion of the acyl carrier protein and thioester reductase pair is generally effective for engineering of various polyketide synthase pathways. As a proof of concept, stereoselective and stereodivergent bioproduction of non-natural diols, namely, 1,3-butanediols and 2-methyl-1,3-butanediols, is achieved by harnessing the modularity of polyketide synthases. Our study expands the catalytic versatility of modular polyketide synthases and paves the way toward biosynthesis of designer alcohols.

Abstract Image

扩展模块化聚酮合成酶在醇生物合成中的催化多功能性
模块化聚酮合成酶通过一组以装配线方式操作的催化结构域生物合成结构多样的天然产物。尽管广泛的研究集中在模块化聚酮合酶的合理重编程上,但很少有人试图在装配线上引入非规范催化反应。在这里,我们展示了一个硫酯还原酶结构域的插入,它可以产生一个末端醇基,而不是典型的羧酸,到装配线上的聚酮合成酶。研究表明,酰基载体蛋白和硫酯还原酶对的双结构域插入通常对各种聚酮合成酶途径的工程设计有效。作为概念的证明,立体选择性和立体发散的非天然二醇,即1,3-丁二醇和2-甲基-1,3-丁二醇的生物生产是通过利用聚酮合成酶的模块化来实现的。我们的研究扩展了模块化聚酮合成酶的催化多功能性,为设计醇的生物合成铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature chemical biology
Nature chemical biology 生物-生化与分子生物学
CiteScore
23.90
自引率
1.40%
发文量
238
审稿时长
12 months
期刊介绍: Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision. The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms. Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信