Long-Term Cycling Stability and Dendrite Suppression in Garnet-Type Solid-State Lithium Batteries via Plasma-Induced Artificial SEI Layer Formation

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bin Hao, Weiheng Chen, Jialong Wu, Zhong-Jie Jiang, Xiaoping Chen, Zhongqing Jiang
{"title":"Long-Term Cycling Stability and Dendrite Suppression in Garnet-Type Solid-State Lithium Batteries via Plasma-Induced Artificial SEI Layer Formation","authors":"Bin Hao, Weiheng Chen, Jialong Wu, Zhong-Jie Jiang, Xiaoping Chen, Zhongqing Jiang","doi":"10.1002/adfm.202502429","DOIUrl":null,"url":null,"abstract":"The garnet-based solid-state-electrolyte Li<sub>6.5</sub>La<sub>3</sub>Zr<sub>1.5</sub>Ta<sub>0.5</sub>O<sub>12</sub> (LLZTO) faces challenges due to its poor contact with Li-metal, resulting in high interfacial-resistance and dendrite growth. To address this, an SnO<sub>2</sub>-Al (SA) ultra-thin film on LLZTO is fabricated using direct-current/radio-frequency plasma magnetron co-sputtering. This modification layer reacts with molten Li in situ to form a dense and continuous artificial solid-electrolyte-interphase (SEI) layer, composed of Li<sub>2</sub>O, Li-Al-O, Li<sub>x</sub>Sn, and Li<sub>9</sub>Al<sub>4</sub> alloy. Density-functional-theory calculations and in situ optical-microscopy characterization confirm the effectiveness of this interlayer in improving interfacial-modification. Consequently, an ultrahigh critical-current-density of 5.4 mA cm<sup>−2</sup> is achieved, effectively preventing lithium-metal penetration into the bulk electrolyte. The Li symmetric cell with the SA artificial SEI layer cycles stably for 8700 h without dendrite formation, significantly outperforming the SnO<sub>2</sub> modified layer (only 1350 h) and most interface modification layers reported in literature, demonstrating its excellent interfacial-stability. Additionally, full cells with LiFePO<sub>4</sub> and LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cathodes exhibit stable cycling performance (LiFePO<sub>4</sub>: 88.95% capacity retention at the 400<sup>th</sup> cycle at 0.5 C; LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub>: 89.16% capacity retention at the 200<sup>th</sup> cycle at 0.5 C). This work underscores the significant potential of the plasma magnetron co-sputtering method for creating artificial SEI layers, paving the way for the practical application of garnet-type solid-state batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"108 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202502429","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The garnet-based solid-state-electrolyte Li6.5La3Zr1.5Ta0.5O12 (LLZTO) faces challenges due to its poor contact with Li-metal, resulting in high interfacial-resistance and dendrite growth. To address this, an SnO2-Al (SA) ultra-thin film on LLZTO is fabricated using direct-current/radio-frequency plasma magnetron co-sputtering. This modification layer reacts with molten Li in situ to form a dense and continuous artificial solid-electrolyte-interphase (SEI) layer, composed of Li2O, Li-Al-O, LixSn, and Li9Al4 alloy. Density-functional-theory calculations and in situ optical-microscopy characterization confirm the effectiveness of this interlayer in improving interfacial-modification. Consequently, an ultrahigh critical-current-density of 5.4 mA cm−2 is achieved, effectively preventing lithium-metal penetration into the bulk electrolyte. The Li symmetric cell with the SA artificial SEI layer cycles stably for 8700 h without dendrite formation, significantly outperforming the SnO2 modified layer (only 1350 h) and most interface modification layers reported in literature, demonstrating its excellent interfacial-stability. Additionally, full cells with LiFePO4 and LiNi0.8Co0.1Mn0.1O2 cathodes exhibit stable cycling performance (LiFePO4: 88.95% capacity retention at the 400th cycle at 0.5 C; LiNi0.8Co0.1Mn0.1O2: 89.16% capacity retention at the 200th cycle at 0.5 C). This work underscores the significant potential of the plasma magnetron co-sputtering method for creating artificial SEI layers, paving the way for the practical application of garnet-type solid-state batteries.

Abstract Image

等离子体诱导人工SEI层形成石榴石型固态锂电池的长期循环稳定性和枝晶抑制
石榴石基固态电解质Li6.5La3Zr1.5Ta0.5O12 (LLZTO)由于与锂金属接触不良,导致界面电阻高,枝晶生长困难。为了解决这一问题,采用直流/射频等离子体磁控共溅射技术在LLZTO上制备了SnO2-Al (SA)超薄膜。该改性层与熔融锂原位反应形成致密连续的人工固体电解质界面(SEI)层,由Li2O、Li- al - o、LixSn和Li9Al4合金组成。密度泛函理论计算和原位光学显微镜表征证实了该中间层在改善界面修饰方面的有效性。因此,实现了5.4 mA cm−2的超高临界电流密度,有效地防止了锂金属渗透到大块电解质中。具有SA人工SEI层的Li对称电池可稳定循环8700 h而不形成枝晶,明显优于SnO2修饰层(仅1350 h)和文献报道的大多数界面修饰层,证明其具有良好的界面稳定性。此外,使用LiFePO4和LiNi0.8Co0.1Mn0.1O2阴极的全电池表现出稳定的循环性能(在0.5 C下,LiFePO4在第400次循环时容量保持率为88.95%;LiNi0.8Co0.1Mn0.1O2: 89.16%的容量保持在第200次循环在0.5℃)。这项工作强调了等离子体磁控共溅射方法在制造人工SEI层方面的巨大潜力,为石榴石型固态电池的实际应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信