Juan Carlos Criado, Joerg Jaeckel, Michael Spannowsky
{"title":"Field redefinitions in classical field theory with some quantum perspectives","authors":"Juan Carlos Criado, Joerg Jaeckel, Michael Spannowsky","doi":"10.1103/physrevd.111.076019","DOIUrl":null,"url":null,"abstract":"In quantum field theories, field redefinitions are often employed to remove redundant operators in the Lagrangian, making calculations simpler and physics more evident. This technique requires some care regarding, among other things, the choice of observables, the range of applicability, and the appearance and disappearance of solutions of the equations of motion (EOM). Many of these issues can already be studied at the classical level, which is the focus of this work. We highlight the importance of selecting appropriate observables and initial/boundary conditions to ensure the physical invariance of solutions. A classical analog to the Lehmann-Symanzik-Zimmermann (LSZ) formula is presented, confirming that some observables remain independent of field variables without tracking redefinitions. Additionally, we address, with an example, the limitations of noninvertible field redefinitions, particularly with nonperturbative objects like solitons, and discuss their implications for classical and quantum field theories. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"22 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.076019","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
In quantum field theories, field redefinitions are often employed to remove redundant operators in the Lagrangian, making calculations simpler and physics more evident. This technique requires some care regarding, among other things, the choice of observables, the range of applicability, and the appearance and disappearance of solutions of the equations of motion (EOM). Many of these issues can already be studied at the classical level, which is the focus of this work. We highlight the importance of selecting appropriate observables and initial/boundary conditions to ensure the physical invariance of solutions. A classical analog to the Lehmann-Symanzik-Zimmermann (LSZ) formula is presented, confirming that some observables remain independent of field variables without tracking redefinitions. Additionally, we address, with an example, the limitations of noninvertible field redefinitions, particularly with nonperturbative objects like solitons, and discuss their implications for classical and quantum field theories. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.