Unraveling the Complexity of Divalent Hydride Electrolytes in Solid-State Batteries via a Data-Driven Framework with Large Language Model

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qian Wang, Fangling Yang, Yuhang Wang, Di Zhang, Ryuhei Sato, Linda Zhang, Eric Jianfeng Cheng, Yigang Yan, Yungui Chen, Kazuaki Kisu, Shin-ichi Orimo, Hao Li
{"title":"Unraveling the Complexity of Divalent Hydride Electrolytes in Solid-State Batteries via a Data-Driven Framework with Large Language Model","authors":"Qian Wang,&nbsp;Fangling Yang,&nbsp;Yuhang Wang,&nbsp;Di Zhang,&nbsp;Ryuhei Sato,&nbsp;Linda Zhang,&nbsp;Eric Jianfeng Cheng,&nbsp;Yigang Yan,&nbsp;Yungui Chen,&nbsp;Kazuaki Kisu,&nbsp;Shin-ichi Orimo,&nbsp;Hao Li","doi":"10.1002/anie.202506573","DOIUrl":null,"url":null,"abstract":"<p>Solid-state electrolytes (SSEs) are essential for next-generation energy storage technologies. However, the exploration of divalent hydrides is hindered by complex ionic migration mechanisms and reliance on “trial-and-error” methodologies. Conventional approaches, which focus on individual materials and predefined pathways, remain inefficient. Herein, we present a data-driven artificial intelligence framework that integrates a comprehensive SSE database with large language models and ab initio metadynamics (MetaD) simulations to accelerate the discovery of hydride SSEs. Our study reveals that hydrides incorporating neutral molecules have great potential, with MetaD revealing novel “two-step” ion migration mechanisms. Predictive models developed using both experimental and computational data accurately forecast ionic migration activation energies for various types of hydride SSEs. In particular, some SSEs with carbon-containing neutral molecules exhibit notably low activation energy, with barriers as low as 0.62 eV. This framework enables the rapid identification of optimized SSE candidates and establishes a transformative tool for advancing sustainable energy storage technologies.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 25","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202506573","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202506573","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state electrolytes (SSEs) are essential for next-generation energy storage technologies. However, the exploration of divalent hydrides is hindered by complex ionic migration mechanisms and reliance on “trial-and-error” methodologies. Conventional approaches, which focus on individual materials and predefined pathways, remain inefficient. Herein, we present a data-driven artificial intelligence framework that integrates a comprehensive SSE database with large language models and ab initio metadynamics (MetaD) simulations to accelerate the discovery of hydride SSEs. Our study reveals that hydrides incorporating neutral molecules have great potential, with MetaD revealing novel “two-step” ion migration mechanisms. Predictive models developed using both experimental and computational data accurately forecast ionic migration activation energies for various types of hydride SSEs. In particular, some SSEs with carbon-containing neutral molecules exhibit notably low activation energy, with barriers as low as 0.62 eV. This framework enables the rapid identification of optimized SSE candidates and establishes a transformative tool for advancing sustainable energy storage technologies.

基于大语言模型的数据驱动框架揭示固态电池中二价氢化物电解质的复杂性
固态电解质是下一代储能技术的关键。然而,复杂的离子迁移机制和对“试错”方法的依赖阻碍了二价氢化物的探索。传统的方法专注于单个材料和预定义的路径,仍然效率低下。在此,我们提出了一个数据驱动的人工智能框架,该框架将综合SSE数据库与大型语言模型和从头算元动力学(MetaD)模拟集成在一起,以加速氢化物SSE的发现。我们的研究表明,结合中性分子的氢化物具有很大的潜力,MetaD揭示了新的“两步”离子迁移机制。利用实验和计算数据建立的预测模型准确地预测了各种类型氢化物sse的离子迁移活化能。特别是,一些含碳中性分子的sse表现出明显的低活化能,其势垒低至0.62 eV。该框架能够快速识别优化的SSE候选者,并为推进可持续能源存储技术建立一个变革性工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信