{"title":"Atomically Dispersed Metal Interfaces for Analytical Chemistry","authors":"Weiqing Xu, Yu Wu, Wenling Gu, Chengzhou Zhu","doi":"10.1021/acs.accounts.4c00845","DOIUrl":null,"url":null,"abstract":"Engineering sensing interfaces with functional nanomaterials have aroused great interest in constructing novel analytical platforms. The good catalytic abilities and physicochemical properties allow functional nanomaterials to perform catalytic signal transductions and synergistically amplify biorecognition events for efficient target analysis. However, further boosting their catalytic performances poses grand challenges in achieving more sensitive and selective sample assays. Besides, nanomaterials with abundant atomic compositions and complex structural characteristics bring about more difficulties in understanding the underlying mechanism of signal amplification. Atomically dispersed metal catalysts (ADMCs), as an emerging class of heterogeneous catalysts, feature support-stabilized isolated metal catalytic sites, showing maximum metal utilization and a strong metal–support interfacial interaction. These unique structural characteristics are akin to those of homogeneous catalysts, which have well-defined coordination structures between metal sites with synthetic or biological ligands. By integrating the advantages of heterogeneous and homogeneous catalysts, ADMCs present superior catalytic activity and specificity relative to the nanoparticles formed by the nonuniform aggregation of active sites. ADMC-enabled sensing platforms have been demonstrated to realize advanced applications in various fields. Notably, the easily tunable coordination structures of ADMCs bring more opportunities to improve their catalytic performance, further moving toward efficient signal transduction ability. Besides, by leveraging their inherent physicochemical properties and various detection strategies, ADMC-enabled sensing interfaces not only achieve enhanced signal transductions but also show diversified output models. Such superior functions allow ADMC-enabled sensing platforms to access the goal of high-performance detection of trace targets and making significant progress in analytical chemistry.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"6 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.4c00845","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Engineering sensing interfaces with functional nanomaterials have aroused great interest in constructing novel analytical platforms. The good catalytic abilities and physicochemical properties allow functional nanomaterials to perform catalytic signal transductions and synergistically amplify biorecognition events for efficient target analysis. However, further boosting their catalytic performances poses grand challenges in achieving more sensitive and selective sample assays. Besides, nanomaterials with abundant atomic compositions and complex structural characteristics bring about more difficulties in understanding the underlying mechanism of signal amplification. Atomically dispersed metal catalysts (ADMCs), as an emerging class of heterogeneous catalysts, feature support-stabilized isolated metal catalytic sites, showing maximum metal utilization and a strong metal–support interfacial interaction. These unique structural characteristics are akin to those of homogeneous catalysts, which have well-defined coordination structures between metal sites with synthetic or biological ligands. By integrating the advantages of heterogeneous and homogeneous catalysts, ADMCs present superior catalytic activity and specificity relative to the nanoparticles formed by the nonuniform aggregation of active sites. ADMC-enabled sensing platforms have been demonstrated to realize advanced applications in various fields. Notably, the easily tunable coordination structures of ADMCs bring more opportunities to improve their catalytic performance, further moving toward efficient signal transduction ability. Besides, by leveraging their inherent physicochemical properties and various detection strategies, ADMC-enabled sensing interfaces not only achieve enhanced signal transductions but also show diversified output models. Such superior functions allow ADMC-enabled sensing platforms to access the goal of high-performance detection of trace targets and making significant progress in analytical chemistry.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.