Xierzhatijiang Sulaiman, Yan Han, Sheng Liu, Kailing Li, Marissa Shang, Lei Yang, Kenneth White, Yong Zang, Jikui Shen, Jun Wan
{"title":"Enrichment of G-to-U Substitution in SARS-CoV-2 Functional Regions and Its Compensation via Concurrent Mutations","authors":"Xierzhatijiang Sulaiman, Yan Han, Sheng Liu, Kailing Li, Marissa Shang, Lei Yang, Kenneth White, Yong Zang, Jikui Shen, Jun Wan","doi":"10.1002/jmv.70353","DOIUrl":null,"url":null,"abstract":"<p>We surveyed single nucleotide variant (SNV) patterns from 5 903 647 complete SARS-CoV-2 genomes. Among 10 012 SNVs, APOBEC-mediated C-to-U (C > U) deamination was the most prevalent, followed by G > U and other RNA editing-related substitutions including (A > G, U > C, G > A). However, C > U mutations were less frequent in functional regions, for example, S protein, intrinsic disordered regions, and nonsynonymous mutations, where G > U were over-represented. Notably, G-loss substitutions rarely appeared together. Instead, G-gain mutations tended to more frequently co-occur with others, with a marked preference in the S protein, suggesting a compensatory mechanism for G loss in G > U mutations. The temporal patterns revealed C > U frequency declined until late 2021 then resurged in early 2022. Conversely, G > U steadily decreased, with a pronounced drop in January 2022, coinciding with reduced COVID-19 severity. Vaccinated individuals exhibited a slightly but significantly higher C > U frequency and a notably lower G > U frequency compared to the unvaccinated group. Additionally, cancer patients had higher G > U frequency than general patients during the same period. Interestingly, none of the C > U SNVs were uniquely identified in 2724 environmental samples. These findings suggest novel functional roles of G > U in COVID-19 symptoms, potentially linked to oxidative stress and reactive oxygen species, while C > U remains the dominant substitution, likely driven by host immune-mediated RNA editing.</p>","PeriodicalId":16354,"journal":{"name":"Journal of Medical Virology","volume":"97 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmv.70353","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Virology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmv.70353","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We surveyed single nucleotide variant (SNV) patterns from 5 903 647 complete SARS-CoV-2 genomes. Among 10 012 SNVs, APOBEC-mediated C-to-U (C > U) deamination was the most prevalent, followed by G > U and other RNA editing-related substitutions including (A > G, U > C, G > A). However, C > U mutations were less frequent in functional regions, for example, S protein, intrinsic disordered regions, and nonsynonymous mutations, where G > U were over-represented. Notably, G-loss substitutions rarely appeared together. Instead, G-gain mutations tended to more frequently co-occur with others, with a marked preference in the S protein, suggesting a compensatory mechanism for G loss in G > U mutations. The temporal patterns revealed C > U frequency declined until late 2021 then resurged in early 2022. Conversely, G > U steadily decreased, with a pronounced drop in January 2022, coinciding with reduced COVID-19 severity. Vaccinated individuals exhibited a slightly but significantly higher C > U frequency and a notably lower G > U frequency compared to the unvaccinated group. Additionally, cancer patients had higher G > U frequency than general patients during the same period. Interestingly, none of the C > U SNVs were uniquely identified in 2724 environmental samples. These findings suggest novel functional roles of G > U in COVID-19 symptoms, potentially linked to oxidative stress and reactive oxygen species, while C > U remains the dominant substitution, likely driven by host immune-mediated RNA editing.
期刊介绍:
The Journal of Medical Virology focuses on publishing original scientific papers on both basic and applied research related to viruses that affect humans. The journal publishes reports covering a wide range of topics, including the characterization, diagnosis, epidemiology, immunology, and pathogenesis of human virus infections. It also includes studies on virus morphology, genetics, replication, and interactions with host cells.
The intended readership of the journal includes virologists, microbiologists, immunologists, infectious disease specialists, diagnostic laboratory technologists, epidemiologists, hematologists, and cell biologists.
The Journal of Medical Virology is indexed and abstracted in various databases, including Abstracts in Anthropology (Sage), CABI, AgBiotech News & Information, National Agricultural Library, Biological Abstracts, Embase, Global Health, Web of Science, Veterinary Bulletin, and others.