Qianqian Wei, Limin Chen, Yijing Yin, Mudao Pai, Hongmei Duan, Wenlan Zeng, Xue Hu, Min Xu, Shilin Li
{"title":"Analysis of Blood Microbiome From People Living With HIV and Donors by 16S rRNA Metagenomic Sequencing","authors":"Qianqian Wei, Limin Chen, Yijing Yin, Mudao Pai, Hongmei Duan, Wenlan Zeng, Xue Hu, Min Xu, Shilin Li","doi":"10.1002/jmv.70341","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n <p>Utilize 16S rRNA sequencing technology to characterize bacterial species susceptible to people living with HIV (PLWH) across different stages. This mapping aims to establish a foundational framework for preventing secondary HIV infections, prolonging patient survival, enhancing quality of life, and advancing the diagnosis, treatment, and research of bacterial co-infections. In this study, we classified the participants into three groups: The blood of donors living with HIV (DI group), AIDS patients who have received ART treatment (PI group), and healthy blood donors as the control group (DH group). Each group was divided into three parallel subgroups, with 30 samples pooled from each parallel group for plasma extraction. As initial processing steps, the nine parallel subgroups were subjected to nucleic acid extraction and PCR amplification targeting the 16SV34 region. The resulting amplified products were subsequently forwarded to a sequencing company. It can be seen from the Venn diagram that the DI groups showed significantly higher bacterial diversity than the PI group and the DH group. The PI group had lower bacterial relative abundance and diversity compared to the DI group, with a community structure more similar to the control group. The DI group is particularly susceptible to several significant pathogens, including Ralstonia, Pseudomonas, Acinetobacter, Methyloversatilis, and Vibrio. The study revealed a greater quantity and diversity of bacteria in the DI blood compared to the PI and DH groups. This observation may be attributed to PI group patients in this study being hospitalized and receiving treatment.</p>\n </section>\n </div>","PeriodicalId":16354,"journal":{"name":"Journal of Medical Virology","volume":"97 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Virology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmv.70341","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Utilize 16S rRNA sequencing technology to characterize bacterial species susceptible to people living with HIV (PLWH) across different stages. This mapping aims to establish a foundational framework for preventing secondary HIV infections, prolonging patient survival, enhancing quality of life, and advancing the diagnosis, treatment, and research of bacterial co-infections. In this study, we classified the participants into three groups: The blood of donors living with HIV (DI group), AIDS patients who have received ART treatment (PI group), and healthy blood donors as the control group (DH group). Each group was divided into three parallel subgroups, with 30 samples pooled from each parallel group for plasma extraction. As initial processing steps, the nine parallel subgroups were subjected to nucleic acid extraction and PCR amplification targeting the 16SV34 region. The resulting amplified products were subsequently forwarded to a sequencing company. It can be seen from the Venn diagram that the DI groups showed significantly higher bacterial diversity than the PI group and the DH group. The PI group had lower bacterial relative abundance and diversity compared to the DI group, with a community structure more similar to the control group. The DI group is particularly susceptible to several significant pathogens, including Ralstonia, Pseudomonas, Acinetobacter, Methyloversatilis, and Vibrio. The study revealed a greater quantity and diversity of bacteria in the DI blood compared to the PI and DH groups. This observation may be attributed to PI group patients in this study being hospitalized and receiving treatment.
期刊介绍:
The Journal of Medical Virology focuses on publishing original scientific papers on both basic and applied research related to viruses that affect humans. The journal publishes reports covering a wide range of topics, including the characterization, diagnosis, epidemiology, immunology, and pathogenesis of human virus infections. It also includes studies on virus morphology, genetics, replication, and interactions with host cells.
The intended readership of the journal includes virologists, microbiologists, immunologists, infectious disease specialists, diagnostic laboratory technologists, epidemiologists, hematologists, and cell biologists.
The Journal of Medical Virology is indexed and abstracted in various databases, including Abstracts in Anthropology (Sage), CABI, AgBiotech News & Information, National Agricultural Library, Biological Abstracts, Embase, Global Health, Web of Science, Veterinary Bulletin, and others.