{"title":"On the Multigraph Overfull Conjecture","authors":"Michael J. Plantholt, Songling Shan","doi":"10.1002/jgt.23221","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A subgraph <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math> of a multigraph <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is overfull if <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>∣</mo>\n \n <mi>E</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>></mo>\n \n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mrow>\n <mo>⌊</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>/</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>⌋</mo>\n </mrow>\n \n <mo>.</mo>\n </mrow>\n </mrow>\n </semantics></math> Analogous to the Overfull Conjecture proposed by Chetwynd and Hilton in 1986, Stiebitz et al. formed the multigraph version of the conjecture as follows: Let <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> be a multigraph with maximum multiplicity <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math> and maximum degree <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>Δ</mi>\n \n <mo>></mo>\n \n <mfrac>\n <mn>1</mn>\n \n <mn>3</mn>\n </mfrac>\n \n <mi>r</mi>\n \n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n </mrow>\n </semantics></math>. Then <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> has chromatic index <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> if and only if <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> contains no overfull subgraph. In this paper, we prove the following three results toward the Multigraph Overfull Conjecture for sufficiently large and even <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>n</mi>\n \n <mo>=</mo>\n \n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n </mrow>\n </semantics></math>. (1) If <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-regular with <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mi>r</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>/</mo>\n \n <mn>2</mn>\n \n <mo>+</mo>\n \n <mn>18</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> has a 1-factorization. This result also settles a conjecture of the first author and Tipnis from 2001 up to a constant error in the lower bound of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>. (2) If <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> contains an overfull subgraph and <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mi>r</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>/</mo>\n \n <mn>2</mn>\n \n <mo>+</mo>\n \n <mn>18</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msup>\n <mi>χ</mi>\n \n <mo>′</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mrow>\n <mo>⌈</mo>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>f</mi>\n \n <mo>′</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>f</mi>\n \n <mo>′</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> is the fractional chromatic index of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>. (3) If the minimum degree of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is at least <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>+</mo>\n \n <mi>ε</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>r</mi>\n \n <mi>n</mi>\n \n <mo>/</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math> for any <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mn>0</mn>\n \n <mo><</mo>\n \n <mi>ε</mi>\n \n <mo><</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> contains no overfull subgraph, then <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msup>\n <mi>χ</mi>\n \n <mo>′</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. The proof is based on the decomposition of multigraphs into simple graphs and we prove a slightly weaker version of a conjecture due to the first author and Tipnis from 1991 on decomposing a multigraph into constrained simple graphs. The result is also of independent interest.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 2","pages":"226-236"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23221","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A subgraph of a multigraph is overfull if Analogous to the Overfull Conjecture proposed by Chetwynd and Hilton in 1986, Stiebitz et al. formed the multigraph version of the conjecture as follows: Let be a multigraph with maximum multiplicity and maximum degree . Then has chromatic index if and only if contains no overfull subgraph. In this paper, we prove the following three results toward the Multigraph Overfull Conjecture for sufficiently large and even , where . (1) If is -regular with , then has a 1-factorization. This result also settles a conjecture of the first author and Tipnis from 2001 up to a constant error in the lower bound of . (2) If contains an overfull subgraph and , then , where is the fractional chromatic index of . (3) If the minimum degree of is at least for any and contains no overfull subgraph, then . The proof is based on the decomposition of multigraphs into simple graphs and we prove a slightly weaker version of a conjecture due to the first author and Tipnis from 1991 on decomposing a multigraph into constrained simple graphs. The result is also of independent interest.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .