Lucy Ochola, Jesse Gitaka, Bernard Kanoi, Clare Njoki Kimani, Hoseah M. Akala, Martin Omondi Alfred, Lynette Isabella Ochola-Oyier, Bernhards Ogutu
{"title":"Malaria Chemotherapeutics What Next for Africa","authors":"Lucy Ochola, Jesse Gitaka, Bernard Kanoi, Clare Njoki Kimani, Hoseah M. Akala, Martin Omondi Alfred, Lynette Isabella Ochola-Oyier, Bernhards Ogutu","doi":"10.1002/adtp.202400453","DOIUrl":null,"url":null,"abstract":"<p>Malaria remains a significant health challenge in sub-Saharan Africa, accounting for 90% of the global burden of disease. Recent studies have reported an increase in the number of malaria cases and a decrease in deaths. However, these gains can be reversed by emerging resistance to artemisinin and changing climatic conditions. Over the past 30 years, Africa has adopted artemisinin combination therapy (ACT) to treat uncomplicated malaria. Increasingly, reports of parasitic mutations conferring tolerance to artemisinin have emerged in several countries, particularly in East Africa. Although markers of resistance to various partner drugs are known, the potential failure of artemisinin can rapidly alter the situation, especially as the Kelch 13 gene, which confers resistance to artemisinin, becomes less conserved. It is anticipated that there will be a need to switch from current ACTs to new combinations or create a framework for multiple first-line deployment. However, this poses challenges ranging from timely review of policies, training of healthcare workers, access, and deployment to the most peripheral health facilities in remote areas. This review outlines several critical factors that can potentially influence decision making in this new paradigm shift, including insufficient funding and challenges in the development of pharmaceutical products.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"8 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adtp.202400453","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Malaria remains a significant health challenge in sub-Saharan Africa, accounting for 90% of the global burden of disease. Recent studies have reported an increase in the number of malaria cases and a decrease in deaths. However, these gains can be reversed by emerging resistance to artemisinin and changing climatic conditions. Over the past 30 years, Africa has adopted artemisinin combination therapy (ACT) to treat uncomplicated malaria. Increasingly, reports of parasitic mutations conferring tolerance to artemisinin have emerged in several countries, particularly in East Africa. Although markers of resistance to various partner drugs are known, the potential failure of artemisinin can rapidly alter the situation, especially as the Kelch 13 gene, which confers resistance to artemisinin, becomes less conserved. It is anticipated that there will be a need to switch from current ACTs to new combinations or create a framework for multiple first-line deployment. However, this poses challenges ranging from timely review of policies, training of healthcare workers, access, and deployment to the most peripheral health facilities in remote areas. This review outlines several critical factors that can potentially influence decision making in this new paradigm shift, including insufficient funding and challenges in the development of pharmaceutical products.