Copper Impedes Calcification of Human Aortic Vascular Smooth Muscle Cells Through Inhibition of Osteogenic Transdifferentiation and Promotion of Extracellular Matrix Stability

IF 4.5 2区 生物学 Q2 CELL BIOLOGY
Iurii Orlov, Gaëlle Lenglet, Carine Avondo, John H. Beattie, Said Kamel, Irina Korichneva
{"title":"Copper Impedes Calcification of Human Aortic Vascular Smooth Muscle Cells Through Inhibition of Osteogenic Transdifferentiation and Promotion of Extracellular Matrix Stability","authors":"Iurii Orlov,&nbsp;Gaëlle Lenglet,&nbsp;Carine Avondo,&nbsp;John H. Beattie,&nbsp;Said Kamel,&nbsp;Irina Korichneva","doi":"10.1002/jcp.70035","DOIUrl":null,"url":null,"abstract":"<p>Vascular calcification (VC), a common pathological condition, is a strong predictor of cardiovascular events and associated mortality. Development and progression of VC heavily rely on vascular smooth muscle cells (VSMCs) and are closely related to oxidative stress, inflammation, and remodelling of extracellular matrix (ECM). Copper (Cu), an essential microelement, participates in these processes, but its involvement in pathophysiology of VC and VSMCs physiology remains poorly investigated. In the present study, we analysed the impact of Cu on the calcification of human aortic primary VSMCs induced in vitro by treatment with high calcium and phosphate levels. Supplementation with physiological micromolar doses of Cu significantly reduced the amount of calcium deposited on VSMCs as compared to moderate deficiency, Cu restriction with chelators or Cu excess. Moreover, optimal concentrations of Cu ions increased protein production by VSMCs, stimulated their metabolic activity, inhibited alkaline phosphatase activity associated with cell-conditioned medium and cellular lysates, and prevented osteogenic differentiation of VSMCs. RNA-seq results indicated that high calcium and phosphate treatments activated many pathways related to oxidative stress and inflammation in VSMCs at the initial stage of calcification. At the same time, expression of VSMCs-specific markers and certain components of ECM were downregulated. Supplementation of calcifying cells with 10 μM Cu prevented most of the transcriptomic alterations induced by high calcium and phosphate while chelation-mediated restriction of Cu greatly aggravated them. In summary, physiological concentration of Cu impedes in vitro calcification of VSMCs, prevents their osteogenic transition and minimises early phenotypic alterations induced by high calcium and phosphate, thereby underlining the importance of Cu homeostasis for the physiology of VSMCs, one of the cornerstones of cardiovascular health. Our data suggest that features of Cu metabolism and its status should be considered when developing preventive and therapeutic approaches for cardiovascular diseases.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 4","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcp.70035","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70035","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vascular calcification (VC), a common pathological condition, is a strong predictor of cardiovascular events and associated mortality. Development and progression of VC heavily rely on vascular smooth muscle cells (VSMCs) and are closely related to oxidative stress, inflammation, and remodelling of extracellular matrix (ECM). Copper (Cu), an essential microelement, participates in these processes, but its involvement in pathophysiology of VC and VSMCs physiology remains poorly investigated. In the present study, we analysed the impact of Cu on the calcification of human aortic primary VSMCs induced in vitro by treatment with high calcium and phosphate levels. Supplementation with physiological micromolar doses of Cu significantly reduced the amount of calcium deposited on VSMCs as compared to moderate deficiency, Cu restriction with chelators or Cu excess. Moreover, optimal concentrations of Cu ions increased protein production by VSMCs, stimulated their metabolic activity, inhibited alkaline phosphatase activity associated with cell-conditioned medium and cellular lysates, and prevented osteogenic differentiation of VSMCs. RNA-seq results indicated that high calcium and phosphate treatments activated many pathways related to oxidative stress and inflammation in VSMCs at the initial stage of calcification. At the same time, expression of VSMCs-specific markers and certain components of ECM were downregulated. Supplementation of calcifying cells with 10 μM Cu prevented most of the transcriptomic alterations induced by high calcium and phosphate while chelation-mediated restriction of Cu greatly aggravated them. In summary, physiological concentration of Cu impedes in vitro calcification of VSMCs, prevents their osteogenic transition and minimises early phenotypic alterations induced by high calcium and phosphate, thereby underlining the importance of Cu homeostasis for the physiology of VSMCs, one of the cornerstones of cardiovascular health. Our data suggest that features of Cu metabolism and its status should be considered when developing preventive and therapeutic approaches for cardiovascular diseases.

Abstract Image

铜通过抑制成骨转分化和促进细胞外基质稳定性来阻碍人主动脉血管平滑肌细胞钙化
血管钙化(VC)是一种常见的病理状况,是心血管事件和相关死亡率的重要预测因子。VC的发生和发展严重依赖于血管平滑肌细胞(VSMCs),并与氧化应激、炎症和细胞外基质(ECM)重塑密切相关。铜(Cu)是一种必需的微量元素,参与了这些过程,但其在VC和VSMCs病理生理中的作用尚不清楚。在本研究中,我们分析了Cu对体外高钙高磷酸盐处理诱导的人主动脉原发VSMCs钙化的影响。与适度缺乏、螯合剂限制Cu或过量Cu相比,补充生理微摩尔剂量的Cu可显著减少VSMCs上沉积的钙量。此外,最佳浓度的Cu离子增加了VSMCs的蛋白质产量,刺激了其代谢活性,抑制了与细胞条件培养基和细胞裂解物相关的碱性磷酸酶活性,并阻止了VSMCs的成骨分化。RNA-seq结果表明,高钙和高磷酸盐处理激活了钙化初期VSMCs中与氧化应激和炎症相关的许多途径。同时,vsmcs特异性标志物和ECM某些成分的表达下调。在钙化细胞中添加10 μM的Cu可以阻止高钙和高磷酸盐诱导的大部分转录组改变,而螯合介导的Cu限制则大大加剧了这些改变。综上所述,Cu的生理浓度会阻碍VSMCs的体外钙化,阻止其成骨转变,并将高钙和高磷酸盐诱导的早期表型改变降至最低,从而强调了Cu稳态对VSMCs生理的重要性,这是心血管健康的基石之一。我们的数据表明,在制定心血管疾病的预防和治疗方法时,应考虑铜代谢的特征及其状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
256
审稿时长
1 months
期刊介绍: The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信