Sequential multi-dimensional parameter inversion of induction logging data

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Durra H. Saputera, Morten Jakobsen, K. W. A. van Dongen, Nazanin Jahani
{"title":"Sequential multi-dimensional parameter inversion of induction logging data","authors":"Durra H. Saputera,&nbsp;Morten Jakobsen,&nbsp;K. W. A. van Dongen,&nbsp;Nazanin Jahani","doi":"10.1111/1365-2478.70017","DOIUrl":null,"url":null,"abstract":"<p>Structural information about the subsurface near the borehole can be obtained from reconstructed conductivity distributions. These distributions may be reconstructed via the inversion of deep-sensing electromagnetic induction log data. Unfortunately, these complex media often display anisotropy and structural variations in both horizontal and vertical directions, making the three-dimensional inversion computationally demanding and ill-posed. To address these challenges, we introduce a sequential inversion strategy of deep-sensing electromagnetic induction logging data that is measured while drilling. For the inversion at each logging position, we employ a matrix-free implementation of the adjoint integral equation method and a quasi-Newton algorithm. To tackle the ill-posed nature of the problem, we regularize the inverse problem by employing a multi-dimensional inversion parameter technique that shifts from zero- to three-dimensional parameterization. The model derived from the inversion of the data at multiple positions is incrementally integrated by utilizing the sensitivity data at each logging position. To validate our approach, we tested our method on simulated data using an anisotropic model. These experiments show that this approach produces a good reconstruction of the true conductivity for the whole track while only doing the inversion at a single position at a time.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"73 4","pages":"1315-1332"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.70017","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Structural information about the subsurface near the borehole can be obtained from reconstructed conductivity distributions. These distributions may be reconstructed via the inversion of deep-sensing electromagnetic induction log data. Unfortunately, these complex media often display anisotropy and structural variations in both horizontal and vertical directions, making the three-dimensional inversion computationally demanding and ill-posed. To address these challenges, we introduce a sequential inversion strategy of deep-sensing electromagnetic induction logging data that is measured while drilling. For the inversion at each logging position, we employ a matrix-free implementation of the adjoint integral equation method and a quasi-Newton algorithm. To tackle the ill-posed nature of the problem, we regularize the inverse problem by employing a multi-dimensional inversion parameter technique that shifts from zero- to three-dimensional parameterization. The model derived from the inversion of the data at multiple positions is incrementally integrated by utilizing the sensitivity data at each logging position. To validate our approach, we tested our method on simulated data using an anisotropic model. These experiments show that this approach produces a good reconstruction of the true conductivity for the whole track while only doing the inversion at a single position at a time.

感应测井资料序贯多维参数反演
通过重建的电导率分布,可以获得井附近地下的结构信息。这些分布可以通过深感电磁感应测井资料的反演来重建。不幸的是,这些复杂的介质通常在水平和垂直方向上都表现出各向异性和结构变化,这使得三维反演的计算要求很高且不适定。为了应对这些挑战,我们引入了一种随钻测量的深感电磁感应测井数据的顺序反演策略。对于每个测井位置的反演,我们采用了伴随积分方程法的无矩阵实现和准牛顿算法。为了解决问题的病态性质,我们通过采用从零参数化到三维参数化的多维反演参数技术来正则化反问题。利用每个测井位置的敏感性数据,对多位置数据反演得到的模型进行增量整合。为了验证我们的方法,我们使用各向异性模型在模拟数据上测试了我们的方法。这些实验表明,该方法可以很好地重建整个轨道的真实电导率,而每次只在单个位置进行反演。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信