Neha Srivastava, Manikant Tripathi, Basant Lal, Akbar Mohammad, Rajeev Singh, Irfan Ahmad, Chang-Hyung Choi, Abdullah Mashraqi, Shafiul Haque
{"title":"A review on pigmented food waste induced biohydrogen production: current status and challenges","authors":"Neha Srivastava, Manikant Tripathi, Basant Lal, Akbar Mohammad, Rajeev Singh, Irfan Ahmad, Chang-Hyung Choi, Abdullah Mashraqi, Shafiul Haque","doi":"10.1007/s11694-025-03190-0","DOIUrl":null,"url":null,"abstract":"<p>Food waste (FW) is considered as one of highest contributing solid waste and have significant role in environmental pollution. Among various clean fuel option, hydrogen (H<sub>2)</sub> is the most prominent choice as economic biofuels which can be potentially produced by organic waste like FW. High production rate and yield, utilization of versatile organic substrates and non-polluting byproduct generation in form of water vapors and carbon di-oxide (CO<sub>2</sub>) are the unique features of hydrogen as fuel. Various H<sub>2</sub> production route includes direct and indirect biophotolysis, photo-fermentation, as well as dark fermentation, all are generated using FW. Biological route of hydrogen production using organic waste through microbial fermentation is the most ecofriendly, economical and green route. Additionally, in all existing H<sub>2</sub> producing routes, dark fermentation mode of H<sub>2</sub> production is more practical, fast and sustainable among all methods. As FW has high carbohydrate content and fast biodegradability when compare to other organic waste, chances of high H<sub>2</sub> production rate and yield is generally higher. Nevertheless, various other essential parameters like pretreatment and bioprocessing of food waste to biohydrogen production is need to be optimized to make the process more economical and sustainable. Additionally, engineering aspects are also required in the area of bioprocessing and microbial scale for the improving the productivity of the overall process. The all aspects have been covered and discussed in depth in this review based on the current ongoing research and existing challenges. Additionally, the sustainable future prospects and its feasibility is also suggested in detail.</p>","PeriodicalId":631,"journal":{"name":"Journal of Food Measurement and Characterization","volume":"19 5","pages":"2971 - 2986"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11694-025-03190-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Measurement and Characterization","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11694-025-03190-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Food waste (FW) is considered as one of highest contributing solid waste and have significant role in environmental pollution. Among various clean fuel option, hydrogen (H2) is the most prominent choice as economic biofuels which can be potentially produced by organic waste like FW. High production rate and yield, utilization of versatile organic substrates and non-polluting byproduct generation in form of water vapors and carbon di-oxide (CO2) are the unique features of hydrogen as fuel. Various H2 production route includes direct and indirect biophotolysis, photo-fermentation, as well as dark fermentation, all are generated using FW. Biological route of hydrogen production using organic waste through microbial fermentation is the most ecofriendly, economical and green route. Additionally, in all existing H2 producing routes, dark fermentation mode of H2 production is more practical, fast and sustainable among all methods. As FW has high carbohydrate content and fast biodegradability when compare to other organic waste, chances of high H2 production rate and yield is generally higher. Nevertheless, various other essential parameters like pretreatment and bioprocessing of food waste to biohydrogen production is need to be optimized to make the process more economical and sustainable. Additionally, engineering aspects are also required in the area of bioprocessing and microbial scale for the improving the productivity of the overall process. The all aspects have been covered and discussed in depth in this review based on the current ongoing research and existing challenges. Additionally, the sustainable future prospects and its feasibility is also suggested in detail.
期刊介绍:
This interdisciplinary journal publishes new measurement results, characteristic properties, differentiating patterns, measurement methods and procedures for such purposes as food process innovation, product development, quality control, and safety assurance.
The journal encompasses all topics related to food property measurement and characterization, including all types of measured properties of food and food materials, features and patterns, measurement principles and techniques, development and evaluation of technologies, novel uses and applications, and industrial implementation of systems and procedures.