Innovative application of the composite Bezier GSXG hybrid machine learning model for daily evapotranspiration Estimation implementing satellite image data

IF 2.8 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Parastoo Amirzehni, Saeed Samadianfard, AmirHossein Nazemi, AliAshraf Sadraddini
{"title":"Innovative application of the composite Bezier GSXG hybrid machine learning model for daily evapotranspiration Estimation implementing satellite image data","authors":"Parastoo Amirzehni,&nbsp;Saeed Samadianfard,&nbsp;AmirHossein Nazemi,&nbsp;AliAshraf Sadraddini","doi":"10.1007/s12665-025-12236-x","DOIUrl":null,"url":null,"abstract":"<div><p>Estimating reference evapotranspiration (ET<sub>0</sub>), a vital hydrological parameter, is particularly challenging in regions with scarce meteorological data, such as developing countries. Remote sensing data is a valuable resource for obtaining climatic and vegetation parameters. By using MODIS data (LST and NDVI), we aim to improve ET0 estimation accuracy. Four interpolation methods (spline, cubic spline, Bezier, and composite Bezier) are used to enhance the temporal resolution of MODIS data for improved daily ET<sub>0</sub> estimation. Conducted at the Yazd station in Iran, using data from 2003 to 2024, this study implements the traditional XGBoost (eXtreme Gradient Boosting) model and its optimized variant, GSXG (GridSearch- XGBoost), which incorporates GridSearch for superior parameter tuning. The results demonstrate the GSXG model’s significant performance enhancements over the base XGBoost, with the Bezier function achieving an RMSE of 0.855 mm/day and R² of 0.531 using only remote sensing data, and the cubic spline method reaching an RMSE of 0.208 mm/day and R² of 0.972 when combining meteorological and remote sensing inputs. These findings underscore the potential of GSXG to minimize errors and improve predictive reliability. This study demonstrates the value of integrating remote sensing data with optimized machine learning for improved ET<sub>0</sub> estimation, providing a valuable approach for hydrological assessments in data-scarce regions.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"84 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-025-12236-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating reference evapotranspiration (ET0), a vital hydrological parameter, is particularly challenging in regions with scarce meteorological data, such as developing countries. Remote sensing data is a valuable resource for obtaining climatic and vegetation parameters. By using MODIS data (LST and NDVI), we aim to improve ET0 estimation accuracy. Four interpolation methods (spline, cubic spline, Bezier, and composite Bezier) are used to enhance the temporal resolution of MODIS data for improved daily ET0 estimation. Conducted at the Yazd station in Iran, using data from 2003 to 2024, this study implements the traditional XGBoost (eXtreme Gradient Boosting) model and its optimized variant, GSXG (GridSearch- XGBoost), which incorporates GridSearch for superior parameter tuning. The results demonstrate the GSXG model’s significant performance enhancements over the base XGBoost, with the Bezier function achieving an RMSE of 0.855 mm/day and R² of 0.531 using only remote sensing data, and the cubic spline method reaching an RMSE of 0.208 mm/day and R² of 0.972 when combining meteorological and remote sensing inputs. These findings underscore the potential of GSXG to minimize errors and improve predictive reliability. This study demonstrates the value of integrating remote sensing data with optimized machine learning for improved ET0 estimation, providing a valuable approach for hydrological assessments in data-scarce regions.

复合贝塞尔 GSXG 混合机器学习模型在利用卫星图像数据进行日蒸散量估算中的创新应用
在气象数据匮乏的地区,如发展中国家,估算参考蒸散发(ET0)是一个重要的水文参数,尤其具有挑战性。遥感数据是获取气候和植被参数的宝贵资源。利用MODIS数据(LST和NDVI),提高ET0的估计精度。采用样条插值、三次样条插值、贝塞尔插值和复合贝塞尔插值四种插值方法,提高MODIS数据的时间分辨率,改进日蒸散量估算。该研究在伊朗亚兹德站进行,使用了2003年至2024年的数据,实现了传统的XGBoost (eXtreme Gradient Boosting)模型及其优化版本GSXG (GridSearch- XGBoost),该模型结合了GridSearch进行优越的参数调整。结果表明,GSXG模型的性能比基本的XGBoost有显著提高,仅使用遥感数据时,Bezier函数的RMSE为0.855 mm/day, R²为0.531;在结合气象和遥感输入时,三次样条方法的RMSE为0.208 mm/day, R²为0.972。这些发现强调了GSXG在减少错误和提高预测可靠性方面的潜力。该研究证明了将遥感数据与优化的机器学习相结合对改善ET0估算的价值,为数据稀缺地区的水文评估提供了一种有价值的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Earth Sciences
Environmental Earth Sciences 环境科学-地球科学综合
CiteScore
5.10
自引率
3.60%
发文量
494
审稿时长
8.3 months
期刊介绍: Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth: Water and soil contamination caused by waste management and disposal practices Environmental problems associated with transportation by land, air, or water Geological processes that may impact biosystems or humans Man-made or naturally occurring geological or hydrological hazards Environmental problems associated with the recovery of materials from the earth Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials Management of environmental data and information in data banks and information systems Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信