Enhanced removal of metronidazole from aqueous solutions via photo-Fenton-like process: efficiency, kinetics, and toxicity assessment

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES
Saeid Babaei, Farokh Rokhbakhsh-Zamin, Mohammad Ahmadian, Davood Kalantar-Neyestanaki, Nadia Kazemipour
{"title":"Enhanced removal of metronidazole from aqueous solutions via photo-Fenton-like process: efficiency, kinetics, and toxicity assessment","authors":"Saeid Babaei,&nbsp;Farokh Rokhbakhsh-Zamin,&nbsp;Mohammad Ahmadian,&nbsp;Davood Kalantar-Neyestanaki,&nbsp;Nadia Kazemipour","doi":"10.1007/s13201-025-02428-y","DOIUrl":null,"url":null,"abstract":"<div><p>The current study investigated the degradation of the antibiotic metronidazole (MNZ) from aqueous solutions by means of a photo-Fenton-like process-based system. The efficiency of each variable such as CuCOFe<sub>2</sub>O<sub>4</sub>@AC nanoparticles (CFC), UV, and H₂O₂, along with their combined processes, was evaluated to select the most appropriate integrated process. In the second stage, a toxicity test was conducted to assess the drug residues in the effluent from the process. The toxicity test was conducted using the penetration method in Mueller-Hinton agar medium by inoculating wells and blank disks impregnated with the treated wastewater samples and control samples. The removal efficiencies of MNZ for UV, H₂O₂, CFC, UV + H₂O₂, CFC + H<sub>2</sub>O<sub>2</sub>, and UV + CFC + H₂O₂ processes were 2.28, 2.35%, 22.76, 7.53, 34.32, and 24.04%, respectively. As a result, the Fenton-like process (CFC + H<sub>2</sub>O<sub>2</sub>) was identified as the most effective method. Under test conditions: pH equal to 5, hydrogen peroxide value 1000 mg/L, CFC dosage 1000 mg/L, initial MNZ content 10 mg/L, and contact time 70 min, 67.5% of the antibiotic was removed. It was found that the effluent pharmaceutical residues were non-toxic to <i>Escherichia coli</i> and <i>Enterococcus faecalis</i> bacteria. The kinetic studies for the Fenton-like process indicated that the second-order model best fitted the achieved results. Moreover, synergistic effect in the combination process was 1.86 times greater than that of the individual processes. Also, the process demonstrated favorable efficiency in removing MNZ from aqueous solutions. Since the treated wastewater is non-toxic and the nanoparticles can be magnetically recovered, this method appears to be a promising solution for the pharmaceutical industry.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 5","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-025-02428-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-025-02428-y","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

The current study investigated the degradation of the antibiotic metronidazole (MNZ) from aqueous solutions by means of a photo-Fenton-like process-based system. The efficiency of each variable such as CuCOFe2O4@AC nanoparticles (CFC), UV, and H₂O₂, along with their combined processes, was evaluated to select the most appropriate integrated process. In the second stage, a toxicity test was conducted to assess the drug residues in the effluent from the process. The toxicity test was conducted using the penetration method in Mueller-Hinton agar medium by inoculating wells and blank disks impregnated with the treated wastewater samples and control samples. The removal efficiencies of MNZ for UV, H₂O₂, CFC, UV + H₂O₂, CFC + H2O2, and UV + CFC + H₂O₂ processes were 2.28, 2.35%, 22.76, 7.53, 34.32, and 24.04%, respectively. As a result, the Fenton-like process (CFC + H2O2) was identified as the most effective method. Under test conditions: pH equal to 5, hydrogen peroxide value 1000 mg/L, CFC dosage 1000 mg/L, initial MNZ content 10 mg/L, and contact time 70 min, 67.5% of the antibiotic was removed. It was found that the effluent pharmaceutical residues were non-toxic to Escherichia coli and Enterococcus faecalis bacteria. The kinetic studies for the Fenton-like process indicated that the second-order model best fitted the achieved results. Moreover, synergistic effect in the combination process was 1.86 times greater than that of the individual processes. Also, the process demonstrated favorable efficiency in removing MNZ from aqueous solutions. Since the treated wastewater is non-toxic and the nanoparticles can be magnetically recovered, this method appears to be a promising solution for the pharmaceutical industry.

通过类光芬顿过程提高水溶液中甲硝唑的去除率:效率、动力学和毒性评估
本研究利用光- fenton -like工艺系统研究了抗生素甲硝唑(MNZ)在水溶液中的降解。对CuCOFe2O4@AC纳米颗粒(CFC)、UV和h2o₂₂等各变量及其组合工艺的效率进行了评估,以选择最合适的集成工艺。在第二阶段,进行了毒性试验,以评估该工艺流出物中的药物残留。采用渗透法在muller - hinton琼脂培养基中进行毒性试验,接种孔和空白盘,分别浸渍处理后的废水样品和对照样品。MNZ对UV、H₂O₂、CFC、UV + H₂O₂、CFC + H2O2和UV + CFC + H₂O₂的去除率分别为2.28%、2.35%、22.76、7.53、34.32和24.04%。结果表明,类芬顿法(CFC + H2O2)是最有效的处理方法。试验条件:pH = 5,过氧化氢值1000mg /L, CFC投加量1000mg /L, MNZ初始含量10mg /L,接触时间70min,抗生素去除率为67.5%。出水药渣对大肠杆菌和粪肠球菌均无毒。对类芬顿过程的动力学研究表明,二阶模型最能拟合所得结果。组合过程的协同效应是单个过程的1.86倍。此外,该工艺在去除水溶液中的MNZ方面也表现出了良好的效率。由于处理后的废水是无毒的,并且纳米颗粒可以被磁性回收,这种方法似乎是制药工业的一个有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信