Tarek M. Ibrahim, Ayman M. Fathi, Nourhan A. Abdulla
{"title":"Nasal In-Situ Gels of Brij®-Enriched Novasomes as Optimistic Nanovesicular Carriers for Enhancing Anti-Depressant Action of Agomelatine","authors":"Tarek M. Ibrahim, Ayman M. Fathi, Nourhan A. Abdulla","doi":"10.1208/s12249-025-03097-5","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of study was to exploit distinctive features of nasal administration route to boost agomelatine permeation and upgrade its anti-depressant action after being embedded in Brij<sup>®</sup>-enriched novasomes (NVs) as non-phospholipid vesicular systems. Different amounts and types of excipients were used to evaluate NVs using definitive screening design (DSD). Optimal NV was incorporated in thermosensitive <i>in-situ</i> gels containing poloxamer 407 (P-407) and hydroxypropyl methyl cellulose (HPMC). After evaluation of novasomal <i>in-situ</i> gels (NVGs), optimal NVG was subjected to <i>ex-vivo</i>, <i>in-vivo</i>, and biochemical investigations. Results showed significant increase in entrapment capability (EC%), particle size (P.S), and zeta potential (Z.P) of NVs after increasing free fatty acid, surfactant, and cholesterol amounts. The capability of Brij<sup>®</sup> to improve fluidization of lipid bilayers, decrease P.S, and increase Z.P was observed. Lipohilicity, EC%, and Z.P of Brij<sup>®</sup> 56-enriched NVs were higher than those containing Brij<sup>®</sup> 35. Gradual increase in HPMC concentration and gel/NV ratio led to marked decrease in gelation time and spreadability and increase in gel strength and viscosity values of NVGs. Optimal NVG9 displayed higher permeation profile (538.34 μg/cm<sup>2</sup>) and drug flux (39.38 μg/cm<sup>2</sup>.h<sup>−1</sup>) through fresh sheep nasal mucosa in comparison to control gel (150.76 μg/cm<sup>2</sup> and 14.44 μg/cm<sup>2</sup>.h<sup>−1</sup>, respectively). Rats treated with nasal optimal NVG9 manifested increased sucrose preference (SP) percent (80.73%) and levels of dopamine (50.42 ng/g) and serotonin (44.92 ng/g) with decreased low latency time values (5.86 min). This study confirmed the <i>in-vivo</i> safety and amplification of precognitive and anti-depressant action of agomelatine after intranasal administration.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-025-03097-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-025-03097-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of study was to exploit distinctive features of nasal administration route to boost agomelatine permeation and upgrade its anti-depressant action after being embedded in Brij®-enriched novasomes (NVs) as non-phospholipid vesicular systems. Different amounts and types of excipients were used to evaluate NVs using definitive screening design (DSD). Optimal NV was incorporated in thermosensitive in-situ gels containing poloxamer 407 (P-407) and hydroxypropyl methyl cellulose (HPMC). After evaluation of novasomal in-situ gels (NVGs), optimal NVG was subjected to ex-vivo, in-vivo, and biochemical investigations. Results showed significant increase in entrapment capability (EC%), particle size (P.S), and zeta potential (Z.P) of NVs after increasing free fatty acid, surfactant, and cholesterol amounts. The capability of Brij® to improve fluidization of lipid bilayers, decrease P.S, and increase Z.P was observed. Lipohilicity, EC%, and Z.P of Brij® 56-enriched NVs were higher than those containing Brij® 35. Gradual increase in HPMC concentration and gel/NV ratio led to marked decrease in gelation time and spreadability and increase in gel strength and viscosity values of NVGs. Optimal NVG9 displayed higher permeation profile (538.34 μg/cm2) and drug flux (39.38 μg/cm2.h−1) through fresh sheep nasal mucosa in comparison to control gel (150.76 μg/cm2 and 14.44 μg/cm2.h−1, respectively). Rats treated with nasal optimal NVG9 manifested increased sucrose preference (SP) percent (80.73%) and levels of dopamine (50.42 ng/g) and serotonin (44.92 ng/g) with decreased low latency time values (5.86 min). This study confirmed the in-vivo safety and amplification of precognitive and anti-depressant action of agomelatine after intranasal administration.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.