Marina M. Marcos Valdez, Julio Sanchez, María E. Bertotto, Octavio E. Fandiño, Fernando P. Cometto, Norma R. Sperandeo
{"title":"The Amorphous State of the Antiepileptic Clobazam: Preparation and Characterization","authors":"Marina M. Marcos Valdez, Julio Sanchez, María E. Bertotto, Octavio E. Fandiño, Fernando P. Cometto, Norma R. Sperandeo","doi":"10.1208/s12249-025-03101-y","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this study was to prepare and characterize amorphous clobazam (CLOB) and investigate its devitrification under various stressors (temperature/humidity, compaction and mechanical/thermal stresses). Amorphous CLOB was prepared by melt-quenching in liquid nitrogen. The quench-cooled sample (CLOB-q) was characterized via polarized light and hot-stage microscopies (PLM and HSM), X-ray powder diffraction (XRPD), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), conventional and modulated DSC (DSC-c and MDSC®), thermogravimetry (TG), dynamic mechanical analysis (DMA), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Stability of CLOB-q toward temperature/humidity, compaction, and combined mechanical and thermal stress were also evaluated. CLOB-q was a truly amorphous form, as revealed by DSC-c, MDSC® and DMA. Its calorimetric glass transition temperature (Tg) was 67.0 °C (20 °C/min) and the ratio Tm/Tg was 1.34, indicating a fragile glass. The water contact angle of CLOB-q (121.8° ± 1.7°) was lower than that of crystalline CLOB (CLOB-c, 131.3° ± 3.6°), likely due to its higher concentration of surface CL, as determined by XPS. Storage of CLOB-q at - 20 °C/0% RH, 25 °C/0% RH and 40 °C/75% RH resulted in its complete devitrification to CLOB-c within 60 days, 4 days, and 42 h respectively. Subjection of CLOB-q to compaction (19.6 kN) and combined mechanical-thermal stresses also resulted in complete crystallization to CLOB-c. In conclusion, amorphous CLOB was successfully prepared in the laboratory for the first time and thoroughly characterized. It easily devitrified to CLOB-c by effect of different stressors, and thus it could not have advantages over CLOB-c in terms of physical stability.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-025-03101-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study was to prepare and characterize amorphous clobazam (CLOB) and investigate its devitrification under various stressors (temperature/humidity, compaction and mechanical/thermal stresses). Amorphous CLOB was prepared by melt-quenching in liquid nitrogen. The quench-cooled sample (CLOB-q) was characterized via polarized light and hot-stage microscopies (PLM and HSM), X-ray powder diffraction (XRPD), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), conventional and modulated DSC (DSC-c and MDSC®), thermogravimetry (TG), dynamic mechanical analysis (DMA), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Stability of CLOB-q toward temperature/humidity, compaction, and combined mechanical and thermal stress were also evaluated. CLOB-q was a truly amorphous form, as revealed by DSC-c, MDSC® and DMA. Its calorimetric glass transition temperature (Tg) was 67.0 °C (20 °C/min) and the ratio Tm/Tg was 1.34, indicating a fragile glass. The water contact angle of CLOB-q (121.8° ± 1.7°) was lower than that of crystalline CLOB (CLOB-c, 131.3° ± 3.6°), likely due to its higher concentration of surface CL, as determined by XPS. Storage of CLOB-q at - 20 °C/0% RH, 25 °C/0% RH and 40 °C/75% RH resulted in its complete devitrification to CLOB-c within 60 days, 4 days, and 42 h respectively. Subjection of CLOB-q to compaction (19.6 kN) and combined mechanical-thermal stresses also resulted in complete crystallization to CLOB-c. In conclusion, amorphous CLOB was successfully prepared in the laboratory for the first time and thoroughly characterized. It easily devitrified to CLOB-c by effect of different stressors, and thus it could not have advantages over CLOB-c in terms of physical stability.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.