Eco-friendly synthesis of Ag/CeO2 and CuO/CeO2 nanocomposites using Curcuma longa extract and assessment of their antioxidant, antifungal, and cytotoxic activities†
Khaled M. Elattar, Abeer A. Ghoniem, Fatimah O. Al-Otibi, Abdulaziz S. Fakhouri, Yosra A. Helmy, WesamEldin I. A. Saber, Mahmoud A. E. Hassan and Ashraf Elsayed
{"title":"Eco-friendly synthesis of Ag/CeO2 and CuO/CeO2 nanocomposites using Curcuma longa extract and assessment of their antioxidant, antifungal, and cytotoxic activities†","authors":"Khaled M. Elattar, Abeer A. Ghoniem, Fatimah O. Al-Otibi, Abdulaziz S. Fakhouri, Yosra A. Helmy, WesamEldin I. A. Saber, Mahmoud A. E. Hassan and Ashraf Elsayed","doi":"10.1039/D5RA00739A","DOIUrl":null,"url":null,"abstract":"<p >This work focused on the biosynthesis of Ag/CeO<small><sub>2</sub></small> and CuO/CeO<small><sub>2</sub></small> nanocomposites (NCs) using <em>Curcuma longa</em> extract. The nanocomposites were efficiently characterized using different techniques such as FTIR, UV-visible spectroscopy, zeta potential, DLS, TEM, SEM, EDX, and XRD analyses. The <em>C. longa</em> extract provided high phenolic and flavonoid contents, while demonstrating strong antioxidant action at IC<small><sub>50</sub></small> = 0.042 mg mL<small><sup>−1</sup></small>. In particular, both nanocomposites exhibited privileged antifungal activity against <em>Macrophomina phaseolina</em> with superiority to CuO/CeO<small><sub>2</sub></small> (MIC = 29 µg mL<small><sup>−1</sup></small>) over Ag/CeO<small><sub>2</sub></small> (MIC = 49 µg mL<small><sup>−1</sup></small>). TEM analyses confirmed the adverse effect of nanocomposites on the fungal cell wall. The CuO/CeO<small><sub>2</sub></small> structure led to mitochondrial and cytoplasmic damage in MCF-7 cells (IC<small><sub>50</sub></small> = 0.5071 µg mL<small><sup>−1</sup></small>) according to cytotoxicity tests; however, the Ag/CeO<small><sub>2</sub></small> NC resulted in significant nuclear damage and an increased occurrence of autophagy events. The nanocomposites showed cytotoxic properties by causing oxidative stress, leading to damage of the genomic material and defects in cell structure, suggesting potential therapeutic applications.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 16","pages":" 12100-12116"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra00739a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra00739a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work focused on the biosynthesis of Ag/CeO2 and CuO/CeO2 nanocomposites (NCs) using Curcuma longa extract. The nanocomposites were efficiently characterized using different techniques such as FTIR, UV-visible spectroscopy, zeta potential, DLS, TEM, SEM, EDX, and XRD analyses. The C. longa extract provided high phenolic and flavonoid contents, while demonstrating strong antioxidant action at IC50 = 0.042 mg mL−1. In particular, both nanocomposites exhibited privileged antifungal activity against Macrophomina phaseolina with superiority to CuO/CeO2 (MIC = 29 µg mL−1) over Ag/CeO2 (MIC = 49 µg mL−1). TEM analyses confirmed the adverse effect of nanocomposites on the fungal cell wall. The CuO/CeO2 structure led to mitochondrial and cytoplasmic damage in MCF-7 cells (IC50 = 0.5071 µg mL−1) according to cytotoxicity tests; however, the Ag/CeO2 NC resulted in significant nuclear damage and an increased occurrence of autophagy events. The nanocomposites showed cytotoxic properties by causing oxidative stress, leading to damage of the genomic material and defects in cell structure, suggesting potential therapeutic applications.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.