GNN-MiCS: Graph Neural-Network-Based Bounding Time in Embedded Mixed-Criticality Systems

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Behnaz Ranjbar;Paul Justen;Akash Kumar
{"title":"GNN-MiCS: Graph Neural-Network-Based Bounding Time in Embedded Mixed-Criticality Systems","authors":"Behnaz Ranjbar;Paul Justen;Akash Kumar","doi":"10.1109/LES.2024.3466268","DOIUrl":null,"url":null,"abstract":"In mixed-criticality (MC) systems, each task has multiple WCETs for different operation modes. Determining WCETs for low-criticality modes (LO modes) is challenging. A lower WCET improves processor utilization, but a longer one reduces mode switches, maintaining smooth task execution even with low utilization. Most research focuses on WCETs for the highest-criticality mode, with fewer solutions for LO modes in graph-based applications. This letter proposes GNN-MiCS, a machine learning and graph neural networks (GNNs) scheme to determine WCETs for directed acyclic graph applications in LO modes. GNN-MiCS generates test sets and computes proper WCETs based on the application graph to enhance system timing behavior. Experiments show our approach improves MC system utilization by up to 45.85% and 22.45% on average while maintaining a reasonable number of mode switches in the worst-case scenario.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"17 2","pages":"107-110"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10689381/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In mixed-criticality (MC) systems, each task has multiple WCETs for different operation modes. Determining WCETs for low-criticality modes (LO modes) is challenging. A lower WCET improves processor utilization, but a longer one reduces mode switches, maintaining smooth task execution even with low utilization. Most research focuses on WCETs for the highest-criticality mode, with fewer solutions for LO modes in graph-based applications. This letter proposes GNN-MiCS, a machine learning and graph neural networks (GNNs) scheme to determine WCETs for directed acyclic graph applications in LO modes. GNN-MiCS generates test sets and computes proper WCETs based on the application graph to enhance system timing behavior. Experiments show our approach improves MC system utilization by up to 45.85% and 22.45% on average while maintaining a reasonable number of mode switches in the worst-case scenario.
嵌入式混合临界系统中基于图神经网络的边界时间
在混合临界(MC)系统中,每个任务都有多个wcet用于不同的操作模式。确定低临界模式(LO模式)的WCETs具有挑战性。较低的WCET可以提高处理器利用率,但较长的WCET可以减少模式切换,即使在低利用率的情况下也能保持任务的平稳执行。大多数研究都集中在最高临界模式的wcet上,而基于图的应用程序中LO模式的解决方案较少。这封信提出了GNN-MiCS,这是一种机器学习和图神经网络(gnn)方案,用于确定LO模式下有向无环图应用程序的WCETs。GNN-MiCS生成测试集,并根据应用程序图计算适当的wcet,以增强系统定时行为。实验表明,我们的方法在最坏情况下保持合理的模式切换数量的同时,平均可将MC系统利用率提高45.85%和22.45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信