Jiangjian Xie;Yingqi Wang;Xinyuan Qian;Junguo Zhang;Björn W. Schuller
{"title":"Improving Bird Vocalization Recognition in Open-Set Cross-Corpus Scenarios With Semantic Feature Reconstruction and Dual Strategy Scoring","authors":"Jiangjian Xie;Yingqi Wang;Xinyuan Qian;Junguo Zhang;Björn W. Schuller","doi":"10.1109/LSP.2025.3549008","DOIUrl":null,"url":null,"abstract":"Automated recognition of bird vocalizations (BVs) is essential for biodiversity monitoring through passive acoustic monitoring (PAM), yet deep learning (DL) models encounter substantial challenges in open environments. These include difficulties in detecting unknown classes, extracting species-specific features, and achieving robust cross-corpus recognition. To address these challenges, this letter presents a DL-based open-set cross-corpus recognition method for BVs that combines feature construction with open-set recognition (OSR) techniques. We introduce a three-channel spectrogram that integrates both amplitude and phase information to enhance feature representation. To improve the recognition accuracy of known classes across corpora, we employ a class-specific semantic reconstruction model to extract deep features. For unknown class discrimination, we propose a Dual Strategy Coupling Scoring (DSCS) mechanism, which synthesizes the log-likelihood ratio score (LLRS) and reconstruction error score (RES). Our method achieves the highest weighted accuracy among existing approaches on a public dataset, demonstrating its effectiveness for open-set cross-corpus bird vocalization recognition.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1515-1519"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10916694/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Automated recognition of bird vocalizations (BVs) is essential for biodiversity monitoring through passive acoustic monitoring (PAM), yet deep learning (DL) models encounter substantial challenges in open environments. These include difficulties in detecting unknown classes, extracting species-specific features, and achieving robust cross-corpus recognition. To address these challenges, this letter presents a DL-based open-set cross-corpus recognition method for BVs that combines feature construction with open-set recognition (OSR) techniques. We introduce a three-channel spectrogram that integrates both amplitude and phase information to enhance feature representation. To improve the recognition accuracy of known classes across corpora, we employ a class-specific semantic reconstruction model to extract deep features. For unknown class discrimination, we propose a Dual Strategy Coupling Scoring (DSCS) mechanism, which synthesizes the log-likelihood ratio score (LLRS) and reconstruction error score (RES). Our method achieves the highest weighted accuracy among existing approaches on a public dataset, demonstrating its effectiveness for open-set cross-corpus bird vocalization recognition.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.